CSE227 – Graduate Computer Security

Side Channels

UC San Diego

Housekeeping

General course things to know

- Course projects
 - I will provide some initial thoughts and feedback on each of your project ideas by **this Friday** via email
 - Start meeting with your teams, ideating, and reaching out to me if you have things you want to chat about

Today's lecture

Learning Objectives

3

- Discuss the "Cold boot" attack on DRAM
- Learn about IoT devices, voice interfaces, and how those interfaces fall apart in practice
- Discuss "Skill Squatting Attacks" paper
- Discuss "Light Commands" paper

Lest We Remember: Cold-Boot Attacks on Encryption Keys

What is DRAM?

5

What is DRAM?

6

DRAM: Dynamic random-access memory – a type of computer memory (hardware)

Cold Boot Attack

7

What is the attack the authors want to conduct?

Cold Boot Attack

What is the attack the authors want to conduct?

Cold Boot Attack

What is the attack the authors want to conduct?

What makes the attack possible?

9

Memory remanance: Most DRAM lose contents *gradually* over a period of seconds not all at once. This creates an opportunity to inspect what's in DRAM!

DRAM cells are essentially just capacitors. What is a capacitor?

Write "1"

What is a *refresh* in DRAM, and how does it work?

Write "1"

What is a refresh interval?

Write "1"

12

What is a *refresh* in DRAM, and how does it work?

What happens if we don't refresh the cell?

What happens if we don't refresh the cell?

• How did the authors test the time for DRAM cells to decay?

- How did the authors test the time for DRAM cells to decay?
- How did the authors measure errors?

- How did the authors test the time for DRAM cells to decay?
- How did the authors measure errors?
 - Hamming distance: number of bit errors divided by the total number of bits

- How did the authors test the time for DRAM cells to decay?
- How did the authors measure errors?
 - Hamming distance: number of bit errors divided by the total number of bits
- What would the error rate be if memory had fully decayed?

Reduced Temperature Experiments

• How did changing the temperature affect decay times?

Reduced Temperature Experiments

- How did changing the temperature affect decay times?
 - Reduced temperature to -50 degrees celsius (-58 degrees F) – attacker could cut power for 1 minute and recover at least 99.9% of bits correctly

Reduced Temperature Experiments

- How did changing the temperature affect decay times?
 - Reduced temperature to -50 degrees celsius (-58 degrees F) – attacker could cut power for 1 minute and recover at least 99.9% of bits correctly
- How did the authors make it even colder?

Getting data out of DRAM

- Turns out, this is nontrivial
 - Rebooting immediately starts to refresh DRAM cells, which could erase memory that was previously written in those cells
- You could write a small program that can copy memory to another medium
 - Authors essentially created a few extremely tiny programs to do this to show proof of concept – we won't discuss this but it's pretty cool

What can we do with this?

- Paper goes into lots of fun detail about reconstructing cryptographic keys
 - DES, AES, RSA —> all of these can be reconstructed
- What is the fundamental reason why keys can be reconstructed?

What can we do with this?

- Paper goes into lots of fun detail about reconstructing cryptographic keys
 - DES, AES, RSA —> all of these can be reconstructed
- What is the fundamental reason why keys can be reconstructed?
 - Keys have unique signatures: AES has a **key schedule** with a repeatable pattern that you can exploit as a side channel to find an AES key :)

• What is an encrypted disk?

- What is an encrypted disk?
- What is on-the-fly encryption?

- What is an encrypted disk?
- What is on-the-fly encryption?
- How does BitLocker encrypt data on the disk?

- What is an encrypted disk?
- What is on-the-fly encryption?
- How does BitLocker encrypt data on the disk?
 - Authors defeated BitLocker, FileVault, TrueCrypt, dm-crypt, Loop-AES, and could probably have done a lot more!

_	_

Feasibility

- How feasible is this attack?
- Do you believe this attack will work in practice? Why or why not?

Break Time + Attendance

Codeword: Florida-On-Ice

https://tinyurl.com/cse227-attend

Skill Squatting Attacks

What's an IoT Device?

What's an IoT Device?

IoT devices are devices with sensors, processing, software, and other tech that allow them to exchange data with other devices and actuate in the real world

What's a voice user interface?
What's a voice user interface?

Technology that lets you engage with a device or application using speech recognition.

What's a "skill?" (Amazon Alexa)

What's a "skill?" (Amazon Alexa)

Essentially, an "app" controlled by the user's voice.

Skill Squatting Attack

What is the attack the authors want to conduct?

Skill Squatting Attack

What is the attack the authors want to conduct?

What makes the attack possible?

Skill Squatting Attack

What is the attack the authors want to conduct?

What makes the attack possible?

Authors found that Amazon's speech-to-text algorithm makes **predictable** errors

Identifying Predictable Errors

- What data did the authors use to identify predictable errors?
- What was the strategy the authors used to *record* what Alexa interpreted on the other end of speech recognition?
- How well did Alexa do?

Identifying Predictable Errors

- What data did the authors use to identify predictable errors?
- What was the strategy the authors used to *record* what Alexa interpreted on the other end of speech recognition?
- How well did Alexa do?
 - 68.9% success rate

Reasons for Errors

- What's a homophone?
- What's a compound word?
- What's a phoneme?

Reasons for Errors

- What's a homophone?
- What's a compound word?
- What's a phoneme?
 - A single basic sound the smallest possible phonetic unit – that helps distinguish one word from another in a language

Predictable Errors

Word	Prediction
Sail	Sale
Rip	Rap
Outshine	Outshyne
Lung	Lang
Accelerate	Xcelerate
Mill	No
Preferably	Preferrably
Earthy	Fi
Calm	Com
Coal	Call
Outdoors	Out Doors
Loud	Louder

Word	Prediction
Superhighway	Super Highway
Wet	What
Main	Maine
Boil	Boyle
Sell	Cell
Full	Four
Dime	Time
Bean	Been
Dull	Doll
Sweeten	Sweden
Luck	Lock
Con	Khan

Predictable Errors

Word	Prediction
Sail	Sale
Rip	Rap
Outshine	Outshyne
Lung	Lang
Accelerate	Xcelerate
Mill	No
Preferably	Preferrably
Earthy	Fi
Calm	Com
Coal	Call
Outdoors	Out Doors
Loud	Louder

Word	Prediction
Superhighway	Super Highway
Wet	What
Main	Maine
Boil	Boyle
Sell	Cell
Full	Four
Dime	Time
Bean	Been
Dull	Doll
Sweeten	Sweden
Luck	Lock
Con	Khan

Extending the attack with phonemes

- The authors extended their attack beyond words using phonemes
 - What was their basic attack strategy?
 - How effective was their attack?

Extending the attack with phonemes

- The authors extended their attack beyond words using phonemes
 - What was their basic attack strategy?
 - How effective was their attack?
 - Increased possible word errors from 188 —> 3606 (17.5x increase)

Meta-points

- What are the capabilities of the attacker?
- What's the threat model in this attack?
- Do you believe this attack will work in practice? Why or why not?
- How would you defend against this attack?

Light Commands

What is the attack the authors want to conduct?

What is the attack the authors want to conduct?

What is the attack the authors want to conduct?

What makes the attack possible?

What is the attack the authors want to conduct?

What makes the attack possible?

"A semantic gap between the physics and specifications of microphones, where microphones often unintentionally respond to light as if it was sound."

Light Commands – Threat Model

• What are the capabilities of the attacker?

Light Commands – Threat Model

- What are the capabilities of the attacker?
 - No physical access
 - Line of sight
 - Device feedback
 - Device characteristics (they can test at home)

What is the attack the authors want to conduct?

What makes the attack possible?

"A semantic gap between the physics and specifications of microphones, where microphones often unintentionally respond to light as if it was sound."

Injecting Sounds as Light

• How did the authors convert a sound (e.g., an audio file saying "OK Google") into light?

Injecting Sounds as Light

- How did the authors convert a sound (e.g., an audio file saying "OK Google") into light?
 - Essentially, modulated laser intensity as a function of the audio waveform
Injecting Sounds as Light

- How did the authors convert a sound (e.g., an audio file saying "OK Google") into light?
 - Essentially, modulated laser intensity as a function of the audio waveform
- Why are microphones sensitive to light in this way?

Injecting Sounds as Light

- How did the authors convert a sound (e.g., an audio file saying "OK Google") into light?
 - Essentially, modulated laser intensity as a function of the audio waveform
- Why are microphones sensitive to light in this way?
 - Photoelectric effects emission of electrons due to light hitting the circuit
 - Photoacoustic effect the diaphragm **moves** because the high intensity light hits it and moves with intensity thus recording the sound

Authors tried this on a number of devices – and it worked!

Device	Backend	Category	Authen- tication	Minimum Power [mW]*	Max Distance at 60 mW [m]**	Max Distance at 5 mW [m]***
Google Home	Google Assistant	Speaker	No	0.5	50+	110+
Google Home Mini	Google Assistant	Speaker	No	16	20	—
Google Nest Cam IQ	Google Assistant	Camera	No	9	50+	_
Echo Plus 1st Generation	Alexa	Speaker	No	2.4	50+	110+
Echo Plus 2nd Generation	Alexa	Speaker	No	2.9	50+	50
Echo	Alexa	Speaker	No	25	50+	—
Echo Dot 2nd Generation	Alexa	Speaker	No	7	50+	
Echo Dot 3rd Generation	Alexa	Speaker	No	9	50+	—
Echo Show 5	Alexa	Speaker	No	17	50+	—
Echo Spot	Alexa	Speaker	No	29	50+	_
Facebook Portal Mini (Front Mic)	Alexa	Speaker	No	1	50+	40
Facebook Portal Mini (Front Mic) [§]	Portal	Speaker	No	6	40	—
Fire Cube TV	Alexa	Streamer	No	13	20	
EcoBee 4	Alexa	Thermostat	No	1.7	50+	70
iPhone XR (Front Mic)	Siri	Phone	Yes	21	10	
iPad 6th Gen	Siri	Tablet	Yes	27	20	
Samsung Galaxy S9 (Bottom Mic)	Google Assistant	Phone	Yes	60	5	—
Google Pixel 2 (Bottom Mic)	Google Assistant	Phone	Yes	46	5	—

*at 30 cm distance, **Data limited to a 50 m long corridor, ***Data limited to a 110 m long corridor, [§]Data generated using only the first 3 commands.

- Ask for the time
- Set the volume to zero
- Purchase items
- Open connected devices (e.g., doors)
- Generate commands + even trigger skills!

- Ask for the time
- Set the volume to zero
- Purchase items
- Open connected devices (e.g., doors)
- Generate commands + even trigger skills!

Feasibility

- Do you believe this attack will work in practice? Why or why not?
- How would you defend against this

Discussion

What about these attacks surprised you?

What do these attacks teach us about trust?

Next time...

- Moving away from software and devices, moving towards the **web**
 - Next two weeks on web, next four weeks on "networking"