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Housekeeping

General course things to know

® Due by 1/17 (tomorrow!) at 11:59

® Project intention form: https://forms.gle/3ethZJAMIG9Gv4xF8

e #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/61827/quizzes/199237

® Makeup office hours tomorrow from 1 — 3pm PT in CSE 3248 for feedback on projects

® Project specification released here: https://kumarde.com/cse227-wi25/

cse22/_project_spec.pdf

® Office hours updates

® Deepak — 2ish — 3:30pm in CSE 3248

® Tianyi: 11am — 12pm via Zoom (see Canvas)


https://forms.gle/3efhZJAmfG9Gv4xF8
https://canvas.ucsd.edu/courses/61827/quizzes/199237
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf

Housekeeping — Comprehensive Exam

General course things to know

® By the end of the quarter 3/18:
® You must get at least a B- in the class

® You must independently write up a document describing your specitic
contributions to the project with no help from any other student, including

your own group

® | will then independently verity these contributions

® | will provide more details about this around the midpoint check-in






Today’s lecture — Software Security

Learning Objectives

® Recap the layout of computer memory, understand why it's possible to
conduct bufter overtlow attacks

® Understand the basics of software vulnerabilities, buffer overtlow attacks, and
ROP

® Discuss some defenses against these attacks and why they might work or not
work

® Discuss the landscape of software attacks more broadly and examine what we
might do to make software “secure”



Notecard time

Instructions

® \Write your name and email on the card, legibly



Preliminaries



What is computer memory?



What is computer memory?

Computer Memory: Quick storage of information, like data, program instructions
used to run computer programs.



Here's how a C program is laid out in memory (simplified)

STACK
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
Memory Layout | |
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? of C y Ly [ Stack | Dynamic
RE Heap Memory
growth | Layout
HEAP
| UNINITIALIZE (.BSS) |

Static

—— Memory INITIALIZE (.DATA)
o e Layout I CODE (.text)
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [ Stack
OF c growth
® How are the stack and heap b -
different?
HEAP
[ UNINITIALIZE (.BSS) |

Static

—— Memory INITIALIZE (.DATA)
o e Layout I CODE (.text)

Dynamic
Memory
Layout
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [ Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [ UNINITIALIZE (.BSS) |

Static

@ Embedded Wala Memory |N|TIAL|ZE ('DATA)
s et Layout I co DE (. text)

Dynamic
Memory
Layout
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [ Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [ UNINITIALIZE (.BSS) |
Static
-
® \What is the .data segment? e EMOTY =l

o bt o Layout | CODE (. tEXt)

Dynamic
Memory
Layout
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Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [ Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [ UNINITIALIZE (.BSS) |

Static

. INITIALIZE (.DATA
® \What is the .data segment? [ oo Memory ( )
Layout || CODE (.text) \

® \What is the .text segment?

Dynamic
Memory
Layout
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C Arrays

® \What is an array?

void function(int a, int b, int c¢) {
char bufferl[5];
char buffer2([10];

}

void main() {

function(1l,2,3);
}
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C Arrays

® \What is an array?

® How much memory is allocated for these
char buffers? Assume a 32-bit machine w/
4-byte word size

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}




19

C Arrays

® \What is an array?

® How much memory is allocated for these void function(int a. int b, int ) {
char buffers? Assume a 32-bit machine w/ bt L
4-byte word size )

| void main() {
® |s this memory allocated on the stack or function(1,2,3);

}

the heap?



C Arrays

® \What is an array?

® How much memory is allocated for these char o (int A int b int
. . 01l nction(int a, 1nt b, int ¢
buffers? Assume a 32-bit machine w/ 4-byte o ehar buffe,(.i[S]. - A

word size char buffer2[10]:
}

® |s this memory allocated on the stack or the

void main() {
heap? \ function(1,2,3):

e \Will the program throw an error if you write
beyond the buffer?

® \Why or why not?

20
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What is a function in C?
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What is a function in C?

Parameter
return type Type

1 1

Int sum ( Int a, Int b );

1 l

Function Parameter Ending
Name Name Statement
Semicolon



Why are we talking about C?



g

Why are we talking about C?

24

@ BairesDev




25

What is the relationship between a function and the stack?



What is the relationship between a function and the stack?

® \We implement function calls via the stack —> using push and pop to keep
track of where in the function we are

® Example:

pushl $3

void function(int a, int b, int c¢) { pushl $2

char bufferl[5]; pushl $1
char buffer2([10]; call function

}

void main() {

} function(1,2,3); 333?19652539%&;)

subl $20,%esp
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Stack Frame Organization

® \What is a stack frame?
® \\Vhat is a return address?

® \Where does a return address go in a
stack frame?
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Stack Frame Organization

® Stacks are divided into frames

® Each frame stores locals + args to called
functions

® call will push the return address (e.g., where you
were previously) onto the stack

® Stack pointer points to the top of the stack
(Y%oesp register in x86)

® x86: stack grows down (from high to low
addresses)

® Frame pointer points to the caller’s frame on the
stack (Y%oebp in x86)

top of stack

Stack Pointer

>

Locals of
DrawLine

Frame Pointer

stack frame
for

DrawSqguare <

subroutine

>

Return Address

Parameters for
DrawlLine

.

Locals of
DrawSquare

Return Address

Parameters for
DrawSquare

stack frame
for
DrawLine
subroutine
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Understanding Function Calls

® \\hat is the caller and what is the callee?
high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fp
local 5

local 6
local 7

Caller frame

Callee frame




Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

nigh address Caller frame

® Both are functions! Even main is a function.

arg i+2
arg i+l
arg 1
ret addr
saved fp
local 1
local 2
local 3
local 4
arg 1+2
arg i+l
arg 1
ret addr
saved fb k

local 5
local 6 ’///
local 7

low address Callee frame




Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

local 5
local 6
local 7

low address

31

saved fb k

@
O‘ Q’
" ” @
w “
* .
«
ks
-
-
. *

Caller frame

Callee frame
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Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

: local 4

new function Soca; 2
arg i+l
arg 1

ret addr

local 5
local 6
local 7

low address

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

Caller frame

Callee frame
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Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

" local 4
new function local 4

arg i+l
arg 1

® \What is the responsibility of the callee? ret addn

local 5
local 6
local 7

low address

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

Caller frame

Callee frame




34

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

" local 4
new function local 4

arg i+l
arg 1

® \What is the responsibility of the callee? ret addn

local 5
local 6

® Save old FP, set FP = SP, allocate stack local 7
space for local storage low address

saved fb Kk

@
o *
" ”‘ .‘
w “
* .
-
-
<
<
»

Caller frame

Callee frame




35

Understanding Function Returns

® \What does the callee do when returning?

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fp
local 5

local 6
local 7

Caller frame

Callee frame
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Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer

® Pop return address and ret

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

local 5
local 6
local 7

Caller frame

Callee frame
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Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer
® Pop return address and ret

® \What does the caller do when returning?

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

local 5
local 6
local 7

Caller frame

Callee frame
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Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer
® Pop return address and ret
® \What does the caller do when returning?

® Pop arguments and continue

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb Kk

@
o *
" ”‘ .‘
w “
* .
-
-
<
<
»

local 5
local 6
local 7

Caller frame

Callee frame
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Any questions?



Smashing the Stack
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What does this function do?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for( i = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}
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What's wrong with this function?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

vold main() {
char large string[256];
int 1;

for( 1 = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}
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Where is the return address on the stack?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for( i = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}
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vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for( 1 = 0; 1 < 255; i++)
large string[i] = 'A';

function(large string);

}

What is the return address written to?

Return Address: 0x41414141
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What is shellcode?




What is shellcode?

(__TEXT
_main:
0000000100000110 pushq %rbp
0000000100000f11 e5 movq %rsp, %rbp
0000000100000 14 ec 30 subq $0x30, %rsp
0000000100000 18 xorl %eax, %eax
0000000100000f 1a mov1l %eax, %edx
0000000100000f1c 75 €0 leaq -0x20(%rbp), %rsi
) 0000000100000 20 0d e9 00 00 00 movq Oxe9(%rip), %rcx ## literal pool symbol address: ___stack_chk_guard
<stdio.h> 0000000100000 27 09 movg  (%rcx), %rcx
int main ( ) 0000000100000f2a 4d f8 movq %rcx, -0x8(%rbp)
_ { 0000000100000f2e dc 00 00 00 00 mov1l $0x0, -0x24(%rbp)
* 0000000100000 35 0d 70 00 00 00 leaq Ox70(%rip), %rcx ## literal pool for: "/bin/sh"
char *args[2]; 0000000100000 3c 4d €0 movg  %rcx, -0x20(%rbp)
- n . ", 0000000100000140 e8 00 00 00 00 movq $0x0, -0x18(%rbp)
CLE [0 ] = "/bin/sh . 0000000100000148 i movq %rcx, %rdi
args[1] = NULL; 0000000100000 4b movb  $0x0, %al
execve("/bin/sh" , args, NU LL) - 000000010000014d 00 00 00 callg ©x100000f82 ## §ymb01 stub For‘: _execve
return 0: 0000000100000152 @d b7 00 00 00 movq Oxb7(%rip), %rcx ## literal pool symbol address: ___stack_chk_guard
4 0000000100000159 09 movq (%rcx), %rcx
0000000100000f5c¢ 55 f8 movq -0x8(%rbp), %rdx
0000000100000 60 dl cmpq %rdx, %rcx
0000000100000f63 d8 mov1l %eax, -0x28(%rbp)
0000000100000f66 08 00 00 00 jne 0x100000f74
0000000100000f6C xorl %eax, %eax
0000000100000 6e c4 30 addq $0x30, %rsp
0000000100000 72 popq %rbp
0000000100000 73 retq
0000000100000f 74 00 00 00 callg 0x100000f7c ## symbol stub for: ___stack_chk_fail
0000000100000 79 ud2

text) section

[ —

1
2
3
4
5
6
7
8
9

46
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Executing shellcode in vulnerable code

® | et's say | have some shellcode VOlgh;gngE?gﬁ?{g;.*Str) {

instructions and the function to the right.
How might | execute the shellcode? strcpy(buffer,str);

}
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Smashing the Stack for Fun and Profit

® Attacker controlled buffer can be overrun to overwrite return address to jump to
any other point in the stack

® |t that point in the stack has valid instructions, the CPU will start running from
there

® £.g., shellcode
® You can overwrite lots of things

® Another local variable, saved frame pointer, function arguments, even deeper
stack frames, exception control data.... anything that is valid to write to on
the stack!



Why does this happen?
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Why does this happen?

® The Clanguage is weakly typed

® Allows writing arbitrary values to arbitrary locations in memory (e.qg., all arrays are the
same under the hood, it's just bytes)

® Control flow is dynamic and based on memory
® Return addresses, function pointers, jump tables
® |f you overwrite these you can change control flow
® The processor doesn’t know the difference between code and data
® This is a common issue in computer security, not just software security

® \Where else?



S

5-Minute exercise: Defenses against buffer overflows

® Can we detect the overwriting of the
return address? How?
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One idea: Canaries

® Can we detect the overwriting of the
return address? How?

® Use a canary — a value the callee
pushes before the return address and
check to make sure it aligns with what
you're expecting

® \When returning, the callee checks
canary against a global “gold” copy
stored as a constant (not on the stack)

high address

low address

Stack

local 1
local 2
local 3
local 4
arg i+2
arg i+l
arg i

Caller frame

Bl I
-
K
Kl
B
a
Kl
B
3
El
*
.
t
-
B
.
L

= SP
o AV,
: " .‘.'o‘\ :

v e"* ,‘.0
. ot e &
‘. . . .0
-

ret addr [~

saved fp
canary
local 1
local 2

.-
s “
e’

< Callee frame
=
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Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?
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Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary
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Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?
® Assumption: impossible to subvert control flow without corrupting the canary

® Can we overwrite the canary with a valid canary value?



56

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?
® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value
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Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value

® Do | always need to overwrite the canary?



Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value
® Do | always need to overwrite the canary?

® No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

58
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Break Time + Attendance

Codeword:
Stacking-Pancakes

https://tinyurl.com/cse227/-attend



https://tinyurl.com/cse227-attend

The Geometry of Innocent Flesh on the Bone:
Return-to-libc without Function Calls (on the

x86)
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Defenses against code vs. data

o \WAX (W xor X)

® Memory protection policy whereby every page in an address space is either
writeable or executable but not both

® \Why does this prevent the attacks we discovered previously?
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Return-to-libc

® \\Vhat is a return-to-libc attack?
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Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode
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Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)
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Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

® “Straight line limited” — means you can only enter into one libc tunction after
another

® “Removal limited” — if you remove libc function that aren’t useful, you can
seriously hamper attackers
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Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

® “Straight line limited” — means you can only enter into one libc tunction after
another

® “Removal limited” — if you remove libc function that aren’t useful, you can
seriously hamper attackers

® This paper: Those assumptions are wrong, you don’t even need functions!



6/

Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?
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Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?

® x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

® All you need is ret to chain gadgets together
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Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?

® x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

® All you need is ret to chain gadgets together

® |s this true in all architectures?



/0

Return-Oriented Programming

® \What is return-oriented programming?

® How do you execute return-oriented programming?
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Return-Oriented Programming

® \What is return-oriented programming?
® How do you execute return-oriented programming?

® Processor executes a ret with %esp (stack pointer) pointing to the bottom
word of the gadget, serves as a sort of “instruction pointer”
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Gadgets Galore

® \What is a useful gadget in this paper?
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Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)
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Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?
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Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?

® Compilers commonly add them at the end of a function! Very hard to avoid.
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Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?
® Compilers commonly add them at the end of a function! Very hard to avoid.

® Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)
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Simple example

]

0x00

Ox ittt

mov %edx, $5

stolen w/ love from UMD
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Simple example

What does this piece of assembly do?

mov %edx, $5

]

0x00

Oxtft

stolen w/ love from UMD
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Simple example

What does this piece of assembly do?

mov %edx, $5

]

0x00

Oxtft

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

l

0x00

Ox ittt

mov %edx, $5

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov %edx, $5

What should we place at the first question mark?

O

0x00

Ox ittt

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov %edx, $5

What should we place at the first question mark?

O

0x00

Ox ittt

stolen w/ love from UMD
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Simple example

— %eip

Ox171: pop %edx mov %edx, $5

ret

What should we place at the second question mark?
%elsp

0x00 Ox T

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx

0x00

— %eip

mov %edx, $5

What should we place at the second question mark?

Joesp

Ox17f 5 - pedx 3

Ox ittt

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx

What should we place here?
Joesp

- Ox17t 5 ? .

0x00 Ox T

— %eip

mov %edx, $5

%edx 5

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx

- Ox171

0x00

— %eip

mov %edx, $5

The return address of the next gadget!
Joesp

S next! .

Ox ittt

stolen w/ love from UMD
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Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?
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Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?

® |ibcis in a fixed location: not true with Address Space Layout
Randomization (ASLR)
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Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?

® |ibcis in a fixed location: not true with Address Space Layout
Randomization (ASLR)

® Control flow integrity (CFl)
® Check at run-time it the execution path is allowed by the original program

® |nsert “tags” before each branch target when branching, and first check the
target's tag matches expectation

® | ike stack canaries, but for control flow rather than data protection
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Discussion
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What about these attacks surprised you?
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What do these attacks teach us about trust?
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Code vs. Data is a fundamental security issue. Why?
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For next time...

® Make sure you submit your project intention form! Due tomorrow, 1/17

® Read two side channels papers (course webpage has been updated post
ilIness) and be ready to discuss them

® Come chat with me about your projects, it you want them to be good :)



