CSE227 - Graduate Computer
Security

Software Security

UCSan Diego

Housekeeping

General course things to know

® Due by 1/17 (tomorrow!) at 11:59

® Project intention form: https://forms.gle/3ethZJAMIG9Gv4xF8

e #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/61827/quizzes/199237

® Makeup office hours tomorrow from 1 — 3pm PT in CSE 3248 for feedback on projects

® Project specification released here: https://kumarde.com/cse227-wi25/

cse22/_project_spec.pdf

® Office hours updates

® Deepak — 2ish — 3:30pm in CSE 3248

® Tianyi: 11am — 12pm via Zoom (see Canvas)

https://forms.gle/3efhZJAmfG9Gv4xF8
https://canvas.ucsd.edu/courses/61827/quizzes/199237
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf

Housekeeping — Comprehensive Exam

General course things to know

® By the end of the quarter 3/18:
® You must get at least a B- in the class

® You must independently write up a document describing your specitic
contributions to the project with no help from any other student, including

your own group

® | will then independently verity these contributions

® | will provide more details about this around the midpoint check-in

Today’s lecture — Software Security

Learning Objectives

® Recap the layout of computer memory, understand why it's possible to
conduct bufter overtlow attacks

® Understand the basics of software vulnerabilities, buffer overtlow attacks, and
ROP

® Discuss some defenses against these attacks and why they might work or not
work

® Discuss the landscape of software attacks more broadly and examine what we
might do to make software “secure”

Notecard time

Instructions

® \Write your name and email on the card, legibly

Preliminaries

What is computer memory?

What is computer memory?

Computer Memory: Quick storage of information, like data, program instructions
used to run computer programs.

Here's how a C program is laid out in memory (simplified)

STACK
Memory Layout | |
of C gsrt:vcwth Dynamic
Heap Memory
growth | Layout
HEAP
[_UNINITIALIZE (.BSS) |

Static

e Memory INITIALIZE (.DATA)
— Layout [CODE (.text)

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
Memory Layout | |
of C gs::;th Dynamic
Heap Memory
growth | Layout
HEAP
‘ UNINITIALIZE (.BSS) |

Static

—— Memory INITIALIZE (.DATA)
o e Layout I CODE (.text)

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? of C y Ly [Stack | Dynamic
RE Heap Memory
growth | Layout
HEAP
| UNINITIALIZE (.BSS) |

Static

—— Memory INITIALIZE (.DATA)
o e Layout I CODE (.text)

13

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [Stack
OF c growth
® How are the stack and heap b -
different?
HEAP
[UNINITIALIZE (.BSS) |

Static

—— Memory INITIALIZE (.DATA)
o e Layout I CODE (.text)

Dynamic
Memory
Layout

14

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [UNINITIALIZE (.BSS) |

Static

@ Embedded Wala Memory |N|TIAL|ZE ('DATA)
s et Layout I co DE (. text)

Dynamic
Memory
Layout

15

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [UNINITIALIZE (.BSS) |
Static
-
® \What is the .data segment? e EMOTY =l

o bt o Layout | CODE (. tEXt)

Dynamic
Memory
Layout

16

Here's how a C program is laid out in memory (simplified)

® \What is the stack?

STACK
. Memory Layout
® \What is the heap? y Ly [Stack
Of C growth
® How are the stack and heap b -
different?
HEAP
® \What is the .bss segment? [UNINITIALIZE (.BSS) |

Static

. INITIALIZE (.DATA
® \What is the .data segment? [oo Memory ()
Layout || CODE (.text) \

® \What is the .text segment?

Dynamic
Memory
Layout

17

C Arrays

® \What is an array?

void function(int a, int b, int c¢) {
char bufferl[5];
char buffer2([10];

}

void main() {

function(1l,2,3);
}

18

C Arrays

® \What is an array?

® How much memory is allocated for these
char buffers? Assume a 32-bit machine w/
4-byte word size

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

19

C Arrays

® \What is an array?

® How much memory is allocated for these void function(int a. int b, int) {
char buffers? Assume a 32-bit machine w/ bt L
4-byte word size)

| void main() {
® |s this memory allocated on the stack or function(1,2,3);

}

the heap?

C Arrays

® \What is an array?

® How much memory is allocated for these char o (int A int b int
. . 01l nction(int a, 1nt b, int ¢
buffers? Assume a 32-bit machine w/ 4-byte o ehar buffe,(.i[S]. - A

word size char buffer2[10]:
}

® |s this memory allocated on the stack or the

void main() {
heap? \ function(1,2,3):

e \Will the program throw an error if you write
beyond the buffer?

® \Why or why not?

20

21

What is a function in C?

22

What is a function in C?

Parameter
return type Type

1 1

Int sum (Int a, Int b);

1 l

Function Parameter Ending
Name Name Statement
Semicolon

Why are we talking about C?

g

Why are we talking about C?

24

@ BairesDev

25

What is the relationship between a function and the stack?

What is the relationship between a function and the stack?

® \We implement function calls via the stack —> using push and pop to keep
track of where in the function we are

® Example:

pushl $3

void function(int a, int b, int c¢) { pushl $2

char bufferl[5]; pushl $1
char buffer2([10]; call function

}

void main() {

} function(1,2,3); 333?19652539%&;)

subl $20,%esp

27

Stack Frame Organization

® \What is a stack frame?
® \\Vhat is a return address?

® \Where does a return address go in a
stack frame?

28

Stack Frame Organization

® Stacks are divided into frames

® Each frame stores locals + args to called
functions

® call will push the return address (e.g., where you
were previously) onto the stack

® Stack pointer points to the top of the stack
(Y%oesp register in x86)

® x86: stack grows down (from high to low
addresses)

® Frame pointer points to the caller’s frame on the
stack (Y%oebp in x86)

top of stack

Stack Pointer

>

Locals of
DrawLine

Frame Pointer

stack frame
for

DrawSqguare <

subroutine

>

Return Address

Parameters for
DrawlLine

.

Locals of
DrawSquare

Return Address

Parameters for
DrawSquare

stack frame
for
DrawLine
subroutine

29

Understanding Function Calls

® \\hat is the caller and what is the callee?
high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fp
local 5

local 6
local 7

Caller frame

Callee frame

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

nigh address Caller frame

® Both are functions! Even main is a function.

arg i+2
arg i+l
arg 1
ret addr
saved fp
local 1
local 2
local 3
local 4
arg 1+2
arg i+l
arg 1
ret addr
saved fb k

local 5
local 6 ’///
local 7

low address Callee frame

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

local 5
local 6
local 7

low address

31

saved fb k

@
O‘ Q’
" ” @
w “
* .
«
ks
-
-
. *

Caller frame

Callee frame

32

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

: local 4

new function Soca; 2
arg i+l
arg 1

ret addr

local 5
local 6
local 7

low address

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

Caller frame

Callee frame

33

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

" local 4
new function local 4

arg i+l
arg 1

® \What is the responsibility of the callee? ret addn

local 5
local 6
local 7

low address

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

Caller frame

Callee frame

34

Understanding Function Calls

Stack

® \\hat is the caller and what is the callee?

high address
® Both are functions! Even main is a function.

arg i+2
arg i+l

® \What are the responsibilities of the caller? P

saved fp
local 1

® Push arguments, save return address, call jocal 2

" local 4
new function local 4

arg i+l
arg 1

® \What is the responsibility of the callee? ret addn

local 5
local 6

® Save old FP, set FP = SP, allocate stack local 7
space for local storage low address

saved fb Kk

@
o *
" ”‘ .‘
w “
* .
-
-
<
<
»

Caller frame

Callee frame

35

Understanding Function Returns

® \What does the callee do when returning?

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fp
local 5

local 6
local 7

Caller frame

Callee frame

36

Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer

® Pop return address and ret

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

local 5
local 6
local 7

Caller frame

Callee frame

37

Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer
® Pop return address and ret

® \What does the caller do when returning?

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb k&

.
+* e
" "‘ “
w .‘
* .
-
.
.
*
.

local 5
local 6
local 7

Caller frame

Callee frame

38

Understanding Function Returns

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer
® Pop return address and ret
® \What does the caller do when returning?

® Pop arguments and continue

high address

low address

Stack

arg i+2
arg i+l
arg 1i
ret addr
saved fp
local 1
local 2
local 3
local 4

arg 1+2

arg i+l
arg 1

ret addr

saved fb Kk

@
o *
" ”‘ .‘
w “
* .
-
-
<
<
»

local 5
local 6
local 7

Caller frame

Callee frame

39

Any questions?

Smashing the Stack

41

What does this function do?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for(i = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}

42

What's wrong with this function?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

vold main() {
char large string[256];
int 1;

for(1 = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}

43

Where is the return address on the stack?

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for(i = 0; i < 255; i++)
large string[i] = 'A';

function(large string);

}

44

vold function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large string[256];
int 1;

for(1 = 0; 1 < 255; i++)
large string[i] = 'A';

function(large string);

}

What is the return address written to?

Return Address: 0x41414141

45

What is shellcode?

What is shellcode?

(__TEXT
_main:
0000000100000110 pushq %rbp
0000000100000f11 e5 movq %rsp, %rbp
0000000100000 14 ec 30 subq $0x30, %rsp
0000000100000 18 xorl %eax, %eax
0000000100000f 1a mov1l %eax, %edx
0000000100000f1c 75 €0 leaq -0x20(%rbp), %rsi
) 0000000100000 20 0d e9 00 00 00 movq Oxe9(%rip), %rcx ## literal pool symbol address: ___stack_chk_guard
<stdio.h> 0000000100000 27 09 movg (%rcx), %rcx
int main () 0000000100000f2a 4d f8 movq %rcx, -0x8(%rbp)
_ { 0000000100000f2e dc 00 00 00 00 mov1l $0x0, -0x24(%rbp)
* 0000000100000 35 0d 70 00 00 00 leaq Ox70(%rip), %rcx ## literal pool for: "/bin/sh"
char *args[2]; 0000000100000 3c 4d €0 movg %rcx, -0x20(%rbp)
- n . ", 0000000100000140 e8 00 00 00 00 movq $0x0, -0x18(%rbp)
CLE [0] = "/bin/sh . 0000000100000148 i movq %rcx, %rdi
args[1] = NULL; 0000000100000 4b movb $0x0, %al
execve("/bin/sh" , args, NU LL) - 000000010000014d 00 00 00 callg ©x100000f82 ## §ymb01 stub For‘: _execve
return 0: 0000000100000152 @d b7 00 00 00 movq Oxb7(%rip), %rcx ## literal pool symbol address: ___stack_chk_guard
4 0000000100000159 09 movq (%rcx), %rcx
0000000100000f5c¢ 55 f8 movq -0x8(%rbp), %rdx
0000000100000 60 dl cmpq %rdx, %rcx
0000000100000f63 d8 mov1l %eax, -0x28(%rbp)
0000000100000f66 08 00 00 00 jne 0x100000f74
0000000100000f6C xorl %eax, %eax
0000000100000 6e c4 30 addq $0x30, %rsp
0000000100000 72 popq %rbp
0000000100000 73 retq
0000000100000f 74 00 00 00 callg 0x100000f7c ## symbol stub for: ___stack_chk_fail
0000000100000 79 ud2

text) section

[—

1
2
3
4
5
6
7
8
9

46

47

Executing shellcode in vulnerable code

® | et's say | have some shellcode VOlgh;gngE?gﬁ?{g;.*Str) {

instructions and the function to the right.
How might | execute the shellcode? strcpy(buffer,str);

}

48

Smashing the Stack for Fun and Profit

® Attacker controlled buffer can be overrun to overwrite return address to jump to
any other point in the stack

® |t that point in the stack has valid instructions, the CPU will start running from
there

® £.g., shellcode
® You can overwrite lots of things

® Another local variable, saved frame pointer, function arguments, even deeper
stack frames, exception control data.... anything that is valid to write to on
the stack!

Why does this happen?

50

Why does this happen?

® The Clanguage is weakly typed

® Allows writing arbitrary values to arbitrary locations in memory (e.qg., all arrays are the
same under the hood, it's just bytes)

® Control flow is dynamic and based on memory
® Return addresses, function pointers, jump tables
® |f you overwrite these you can change control flow
® The processor doesn’t know the difference between code and data
® This is a common issue in computer security, not just software security

® \Where else?

S

5-Minute exercise: Defenses against buffer overflows

® Can we detect the overwriting of the
return address? How?

52

One idea: Canaries

® Can we detect the overwriting of the
return address? How?

® Use a canary — a value the callee
pushes before the return address and
check to make sure it aligns with what
you're expecting

® \When returning, the callee checks
canary against a global “gold” copy
stored as a constant (not on the stack)

high address

low address

Stack

local 1
local 2
local 3
local 4
arg i+2
arg i+l
arg i

Caller frame

Bl I
-
K
Kl
B
a
Kl
B
3
El
*
.
t
-
B
.
L

= SP
o AV,
: " .‘.'o‘\ :

v e"* ,‘.0
. ot e &
‘. . . .0
-

ret addr [~

saved fp
canary
local 1
local 2

.-
s “
e’

< Callee frame
=

53

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

54

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary

55

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?
® Assumption: impossible to subvert control flow without corrupting the canary

® Can we overwrite the canary with a valid canary value?

56

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?
® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value

S7

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value

® Do | always need to overwrite the canary?

Stack Canary Limitations

® \What assumptions am | making about stack canaries that make them usetul?

® Assumption: impossible to subvert control flow without corrupting the canary
® Can we overwrite the canary with a valid canary value?

® Sure, if you can read or guess the value
® Do | always need to overwrite the canary?

® No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

58

59

Break Time + Attendance

Codeword:
Stacking-Pancakes

https://tinyurl.com/cse227/-attend

https://tinyurl.com/cse227-attend

The Geometry of Innocent Flesh on the Bone:
Return-to-libc without Function Calls (on the

x86)

61

Defenses against code vs. data

o \WAX (W xor X)

® Memory protection policy whereby every page in an address space is either
writeable or executable but not both

® \Why does this prevent the attacks we discovered previously?

62

Return-to-libc

® \\Vhat is a return-to-libc attack?

63

Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

64

Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

65

Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

® “Straight line limited” — means you can only enter into one libc tunction after
another

® “Removal limited” — if you remove libc function that aren’t useful, you can
seriously hamper attackers

66

Return-to-libc

® \What is a return-to-libc attack? Return control to system functions to execute
shellcode

® \What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

® “Straight line limited” — means you can only enter into one libc tunction after
another

® “Removal limited” — if you remove libc function that aren’t useful, you can
seriously hamper attackers

® This paper: Those assumptions are wrong, you don’t even need functions!

6/

Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?

638

Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?

® x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

® All you need is ret to chain gadgets together

69

Return-Oriented Programming

® This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

® \What is the fundamental insight about x86 that enables this attack?

® x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

® All you need is ret to chain gadgets together

® |s this true in all architectures?

/0

Return-Oriented Programming

® \What is return-oriented programming?

® How do you execute return-oriented programming?

/1

Return-Oriented Programming

® \What is return-oriented programming?
® How do you execute return-oriented programming?

® Processor executes a ret with %esp (stack pointer) pointing to the bottom
word of the gadget, serves as a sort of “instruction pointer”

/2

Gadgets Galore

® \What is a useful gadget in this paper?

/3

Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

74

Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?

75

Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?

® Compilers commonly add them at the end of a function! Very hard to avoid.

76

Gadgets Galore

® \What is a useful gadget in this paper?

® Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

® \Why do these gadgets exist?
® Compilers commonly add them at the end of a function! Very hard to avoid.

® Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

77

Simple example

]

0x00

Ox ittt

mov %edx, $5

stolen w/ love from UMD

/8

Simple example

What does this piece of assembly do?

mov %edx, $5

]

0x00

Oxtft

stolen w/ love from UMD

79

Simple example

What does this piece of assembly do?

mov %edx, $5

]

0x00

Oxtft

stolen w/ love from UMD

80

Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

l

0x00

Ox ittt

mov %edx, $5

stolen w/ love from UMD

31

Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov %edx, $5

What should we place at the first question mark?

O

0x00

Ox ittt

stolen w/ love from UMD

82

Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov %edx, $5

What should we place at the first question mark?

O

0x00

Ox ittt

stolen w/ love from UMD

83

Simple example

— %eip

Ox171: pop %edx mov %edx, $5

ret

What should we place at the second question mark?
%elsp

0x00 Ox T

stolen w/ love from UMD

84

Simple example

Ox17t: pop %edx

0x00

— %eip

mov %edx, $5

What should we place at the second question mark?

Joesp

Ox17f 5 - pedx 3

Ox ittt

stolen w/ love from UMD

85

Simple example

Ox17t: pop %edx

What should we place here?
Joesp

- Ox17t 5 ? .

0x00 Ox T

— %eip

mov %edx, $5

%edx 5

stolen w/ love from UMD

86

Simple example

Ox17t: pop %edx

- Ox171

0x00

— %eip

mov %edx, $5

The return address of the next gadget!
Joesp

S next! .

Ox ittt

stolen w/ love from UMD

87

Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?

88

Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?

® |ibcis in a fixed location: not true with Address Space Layout
Randomization (ASLR)

89

Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?

® |ibcis in a fixed location: not true with Address Space Layout
Randomization (ASLR)

® Control flow integrity (CFl)
® Check at run-time it the execution path is allowed by the original program

® |nsert “tags” before each branch target when branching, and first check the
target's tag matches expectation

® | ike stack canaries, but for control flow rather than data protection

20

Reiﬂrn:Or‘E iked
PLHOGraMarinG

- N
SATKCEEIra NSOl

1OV, BUI I SiEE D [l cuthm @G
W ARtES F1Y0Oyl VEHAZINE S
LU EE CURtIG LR

MUArURi S frOM MEYK

S GMENtS

Discussion

92

What about these attacks surprised you?

93

What do these attacks teach us about trust?

94

Code vs. Data is a fundamental security issue. Why?

95

For next time...

® Make sure you submit your project intention form! Due tomorrow, 1/17

® Read two side channels papers (course webpage has been updated post
ilIness) and be ready to discuss them

® Come chat with me about your projects, it you want them to be good :)

