
CSE227 – Graduate Computer
Security
Software Security

Housekeeping
General course things to know

• Due by 1/17 (tomorrow!) at 11:59

• Project intention form: https://forms.gle/3efhZJAmfG9Gv4xF8

• #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/61827/quizzes/199237

• Makeup office hours tomorrow from 1 – 3pm PT in CSE 3248 for feedback on projects

• Project specification released here: https://kumarde.com/cse227-wi25/
cse227_project_spec.pdf

• Office hours updates

• Deepak – 2ish – 3:30pm in CSE 3248

• Tianyi: 11am – 12pm via Zoom (see Canvas)
2

https://forms.gle/3efhZJAmfG9Gv4xF8
https://canvas.ucsd.edu/courses/61827/quizzes/199237
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf
https://kumarde.com/cse227-wi25/cse227_project_spec.pdf

Housekeeping – Comprehensive Exam
General course things to know

• By the end of the quarter 3/18:

• You must get at least a B- in the class

• You must independently write up a document describing your specific
contributions to the project with no help from any other student, including
your own group

• I will then independently verify these contributions

• I will provide more details about this around the midpoint check-in

3

Today

4

Today’s lecture – Software Security
Learning Objectives

• Recap the layout of computer memory, understand why it’s possible to
conduct buffer overflow attacks

• Understand the basics of software vulnerabilities, buffer overflow attacks, and
ROP

• Discuss some defenses against these attacks and why they might work or not
work

• Discuss the landscape of software attacks more broadly and examine what we
might do to make software “secure”

5

Notecard time
Instructions

• Write your name and email on the card, legibly

6

Preliminaries

7

What is computer memory?

8

What is computer memory?

9

Computer Memory: Quick storage of information, like data, program instructions
used to run computer programs.

Here’s how a C program is laid out in memory (simplified)

10

Here’s how a C program is laid out in memory (simplified)

11

• What is the stack?

Here’s how a C program is laid out in memory (simplified)

12

• What is the stack?

• What is the heap?

Here’s how a C program is laid out in memory (simplified)

13

• What is the stack?

• What is the heap?

• How are the stack and heap
different?

Here’s how a C program is laid out in memory (simplified)

14

• What is the stack?

• What is the heap?

• How are the stack and heap
different?

• What is the .bss segment?

Here’s how a C program is laid out in memory (simplified)

15

• What is the stack?

• What is the heap?

• How are the stack and heap
different?

• What is the .bss segment?

• What is the .data segment?

Here’s how a C program is laid out in memory (simplified)

16

• What is the stack?

• What is the heap?

• How are the stack and heap
different?

• What is the .bss segment?

• What is the .data segment?

• What is the .text segment?

C Arrays

17

• What is an array?

C Arrays

18

• What is an array?

• How much memory is allocated for these
char buffers? Assume a 32-bit machine w/
4-byte word size

C Arrays

19

• What is an array?

• How much memory is allocated for these
char buffers? Assume a 32-bit machine w/
4-byte word size

• Is this memory allocated on the stack or
the heap?

C Arrays

20

• What is an array?

• How much memory is allocated for these char
buffers? Assume a 32-bit machine w/ 4-byte
word size

• Is this memory allocated on the stack or the
heap?

• Will the program throw an error if you write
beyond the buffer?

• Why or why not?

What is a function in C?

21

What is a function in C?

22

Why are we talking about C?

23

Why are we talking about C?

24

What is the relationship between a function and the stack?

25

What is the relationship between a function and the stack?

26

• We implement function calls via the stack —> using push and pop to keep
track of where in the function we are

• Example:

Stack Frame Organization

27

• What is a stack frame?

• What is a return address?

• Where does a return address go in a
stack frame?

Stack Frame Organization

28

• Stacks are divided into frames

• Each frame stores locals + args to called
functions

• call will push the return address (e.g., where you
were previously) onto the stack

• Stack pointer points to the top of the stack
(%esp register in x86)

• x86: stack grows down (from high to low
addresses)

• Frame pointer points to the caller’s frame on the
stack (%ebp in x86)

Understanding Function Calls

29

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What is the responsibility of the caller?

• Pass arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Calls

30

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What is the responsibility of the caller?

• Pass arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Calls

31

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What are the responsibilities of the caller?

• Pass arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Calls

32

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What are the responsibilities of the caller?

• Push arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Calls

33

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What are the responsibilities of the caller?

• Push arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Calls

34

• What is the caller and what is the callee?

• Both are functions! Even main is a function.

• What are the responsibilities of the caller?

• Push arguments, save return address, call
new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack
space for local storage

Understanding Function Returns

35

• What does the callee do when returning?

• Pop local storage

• Set SP = FP

• Pop frame pointer

• Pop return address and ret

• What does the caller do when returning?

• Pop arguments and continue

Understanding Function Returns

36

• What does the callee do when returning?

• Pop local storage

• Set SP = FP

• Pop frame pointer

• Pop return address and ret

• What does the caller do when returning?

• Pop arguments and continue

Understanding Function Returns

37

• What does the callee do when returning?

• Pop local storage

• Set SP = FP

• Pop frame pointer

• Pop return address and ret

• What does the caller do when returning?

• Pop arguments and continue

Understanding Function Returns

38

• What does the callee do when returning?

• Pop local storage

• Set SP = FP

• Pop frame pointer

• Pop return address and ret

• What does the caller do when returning?

• Pop arguments and continue

Any questions?

39

Smashing the Stack

40

What does this function do?

41

What’s wrong with this function?

42

Where is the return address on the stack?

43

What is the return address written to?

44

Return Address: 0x41414141

What is shellcode?

45

What is shellcode?

46

Executing shellcode in vulnerable code

47

• Let’s say I have some shellcode
instructions and the function to the right.
How might I execute the shellcode?

Smashing the Stack for Fun and Profit

48

• Attacker controlled buffer can be overrun to overwrite return address to jump to
any other point in the stack

• If that point in the stack has valid instructions, the CPU will start running from
there

• E.g., shellcode

• You can overwrite lots of things

• Another local variable, saved frame pointer, function arguments, even deeper
stack frames, exception control data…. anything that is valid to write to on
the stack!

Why does this happen?

49

Why does this happen?

50

• The C language is weakly typed

• Allows writing arbitrary values to arbitrary locations in memory (e.g., all arrays are the
same under the hood, it’s just bytes)

• Control flow is dynamic and based on memory

• Return addresses, function pointers, jump tables

• If you overwrite these you can change control flow

• The processor doesn’t know the difference between code and data

• This is a common issue in computer security, not just software security

• Where else?

5-Minute exercise: Defenses against buffer overflows

51

• Can we detect the overwriting of the
return address? How?

One idea: Canaries

52

• Can we detect the overwriting of the
return address? How?

• Use a canary – a value the callee
pushes before the return address and
check to make sure it aligns with what
you’re expecting

• When returning, the callee checks
canary against a global “gold” copy
stored as a constant (not on the stack)

Stack Canary Limitations

53

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Stack Canary Limitations

54

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Stack Canary Limitations

55

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Stack Canary Limitations

56

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Stack Canary Limitations

57

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Stack Canary Limitations

58

• What assumptions am I making about stack canaries that make them useful?

• Assumption: impossible to subvert control flow without corrupting the canary

• Can we overwrite the canary with a valid canary value?

• Sure, if you can read or guess the value

• Do I always need to overwrite the canary?

• No, what if the function uses pointers? What if you can overwrite the address
of a data pointer to point directly at the saved return address? Then writes
through that pointer will modify the return address without touching the
canary.

Break Time + Attendance

59

Codeword:
Stacking-Pancakes

https://tinyurl.com/cse227-attend

https://tinyurl.com/cse227-attend

The Geometry of Innocent Flesh on the Bone:
Return-to-libc without Function Calls (on the

x86)

60

Defenses against code vs. data

61

• W^X (W xor X)

• Memory protection policy whereby every page in an address space is either
writeable or executable but not both

• Why does this prevent the attacks we discovered previously?

Return-to-libc

62

• What is a return-to-libc attack? Return control to system functions to execute
shellcode

• What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

• “Straight line limited” – means you can only enter into one libc function after
another

• “Removal limited” – if you remove libc function that aren’t useful, you can
seriously hamper attackers

• This paper: Those assumptions are wrong, you don’t even need functions!

Return-to-libc

63

• What is a return-to-libc attack? Return control to system functions to execute
shellcode

• What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

• “Straight line limited” – means you can only enter into one libc function after
another

• “Removal limited” – if you remove libc function that aren’t useful, you can
seriously hamper attackers

• This paper: Those assumptions are wrong, you don’t even need functions!

Return-to-libc

64

• What is a return-to-libc attack? Return control to system functions to execute
shellcode

• What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

• “Straight line limited” – means you can only enter into one libc function after
another

• “Removal limited” – if you remove libc function that aren’t useful, you can
seriously hamper attackers

• This paper: Those assumptions are wrong, you don’t even need functions!

Return-to-libc

65

• What is a return-to-libc attack? Return control to system functions to execute
shellcode

• What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

• “Straight line limited” – means you can only enter into one libc function after
another

• “Removal limited” – if you remove libc function that aren’t useful, you can
seriously hamper attackers

• This paper: Those assumptions are wrong, you don’t even need functions!

Return-to-libc

66

• What is a return-to-libc attack? Return control to system functions to execute
shellcode

• What are some issues with the return-to-libc attack that make it hard to exploit
(in theory?)

• “Straight line limited” – means you can only enter into one libc function after
another

• “Removal limited” – if you remove libc function that aren’t useful, you can
seriously hamper attackers

• This paper: Those assumptions are wrong, you don’t even need functions!

Return-Oriented Programming

67

• This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

• What is the fundamental insight about x86 that enables this attack?

Return-Oriented Programming

68

• This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

• What is the fundamental insight about x86 that enables this attack?

• x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

• All you need is ret to chain gadgets together

Return-Oriented Programming

69

• This paper demonstrates that you don’t even need function calls, but all you
need are micro sequences of instructions to mess with control flow of a
program

• What is the fundamental insight about x86 that enables this attack?

• x86 instructions are ambiguous and dense, so shifting by a single byte often
leads to interesting strings of instructions

• All you need is ret to chain gadgets together

• Is this true in all architectures?

Return-Oriented Programming

70

• What is return-oriented programming?

• How do you execute return-oriented programming?

Return-Oriented Programming

71

• What is return-oriented programming?

• How do you execute return-oriented programming?

• Processor executes a ret with %esp (stack pointer) pointing to the bottom
word of the gadget, serves as a sort of “instruction pointer”

Gadgets Galore

72

• What is a useful gadget in this paper?

• Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

• Stitch together arbitrary programs out of code gadgets already present in the
target binary

• Why do gadgets exist? Compilers commonly add them at the end of a
function! Very hard to avoid.

• Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

Gadgets Galore

73

• What is a useful gadget in this paper?

• Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

• Stitch together arbitrary programs out of code gadgets already present in the
target binary

• Why do gadgets exist? Compilers commonly add them at the end of a
function! Very hard to avoid.

• Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

Gadgets Galore

74

• What is a useful gadget in this paper?

• Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

• Why do these gadgets exist?

• Compilers commonly add them at the end of a function! Very hard to avoid.

• Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

Gadgets Galore

75

• What is a useful gadget in this paper?

• Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

• Why do these gadgets exist?

• Compilers commonly add them at the end of a function! Very hard to avoid.

• Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

Gadgets Galore

76

• What is a useful gadget in this paper?

• Anything that ends w/ ret and doesn’t alter control flow is good (because we
can set up the stack the way we like!)

• Why do these gadgets exist?

• Compilers commonly add them at the end of a function! Very hard to avoid.

• Can build arbitrary new bad programs that are made completely out of “known
good” instructions (e.g., libc)

Simple example

77

0x00 0xffffffff

%edx

mov %edx, $5

stolen w/ love from UMD

Simple example

78

0x00 0xffffffff

%edx

mov %edx, $5

What does this piece of assembly do?

stolen w/ love from UMD

Simple example

79

0x00 0xffffffff

%edx 5

mov %edx, $5

What does this piece of assembly do?

stolen w/ love from UMD

Simple example

80

0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp

Simple example

81

0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp
What should we place at the first question mark?

Simple example

82

0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the first question mark?

Simple example

83

0x00 0xffffffff

%edx
.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the second question mark?

mov %edx, $5

Simple example

84

0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place at the second question mark?

mov %edx, $5

Simple example

85

0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place here?

?

mov %edx, $5

Simple example

86

0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx
 ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
The return address of the next gadget!

next!

mov %edx, $5

Making ROP Hard

87

• What are some assumptions made about the location of libc functions that
make ROP possible?

• libc is in a fixed location: not true with Address Space Layout
Randomization (ASLR)

• Control flow integrity (CFI)

• Check at run-time if the execution path is allowed by the original program

• Insert “tags” before each branch target when branching, and first check the
target’s tag matches expectation

• Like stack canaries, but for control flow rather than data protection

Making ROP Hard

88

• What are some assumptions made about the location of libc functions that
make ROP possible?

• libc is in a fixed location: not true with Address Space Layout
Randomization (ASLR)

• Control flow integrity (CFI)

• Check at run-time if the execution path is allowed by the original program

• Insert “tags” before each branch target when branching, and first check the
target’s tag matches expectation

• Like stack canaries, but for control flow rather than data protection

Making ROP Hard

89

• What are some assumptions made about the location of libc functions that
make ROP possible?

• libc is in a fixed location: not true with Address Space Layout
Randomization (ASLR)

• Control flow integrity (CFI)

• Check at run-time if the execution path is allowed by the original program

• Insert “tags” before each branch target when branching, and first check the
target’s tag matches expectation

• Like stack canaries, but for control flow rather than data protection

90

Discussion

91

What about these attacks surprised you?

92

What do these attacks teach us about trust?

93

Code vs. Data is a fundamental security issue. Why?

94

For next time…

95

• Make sure you submit your project intention form! Due tomorrow, 1/17

• Read two side channels papers (course webpage has been updated post
illness) and be ready to discuss them

• Come chat with me about your projects, if you want them to be good :)

