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Housekeeping
General course things to know

• Due by 1/17 (tomorrow!) at 11:59 

• Project intention form: https://forms.gle/3efhZJAmfG9Gv4xF8 

• #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/61827/quizzes/199237 

• Makeup office hours tomorrow from 1 – 3pm PT in CSE 3248 for feedback on projects 

• Project specification released here: https://kumarde.com/cse227-wi25/
cse227_project_spec.pdf 

• Office hours updates 

• Deepak – 2ish – 3:30pm in CSE 3248 

• Tianyi: 11am – 12pm via Zoom (see Canvas)
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Housekeeping – Comprehensive Exam
General course things to know

• By the end of the quarter 3/18: 

• You must get at least a B- in the class 

• You must independently write up a document describing your specific 
contributions to the project with no help from any other student, including 
your own group 

• I will then independently verify these contributions 

• I will provide more details about this around the midpoint check-in
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Today
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Today’s lecture – Software Security
Learning Objectives

• Recap the layout of computer memory, understand why it’s possible to 
conduct buffer overflow attacks 

• Understand the basics of software vulnerabilities, buffer overflow attacks, and 
ROP 

• Discuss some defenses against these attacks and why they might work or not 
work 

• Discuss the landscape of software attacks more broadly and examine what we 
might do to make software “secure”
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Notecard time
Instructions

• Write your name and email on the card, legibly
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Preliminaries
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What is computer memory?
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What is computer memory?

9

Computer Memory: Quick storage of information, like data, program instructions 
used to run computer programs.



Here’s how a C program is laid out in memory (simplified)
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• What is the stack?
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• What is the stack? 

• What is the heap?
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• What is the stack? 

• What is the heap? 

• How are the stack and heap 
different?
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15

• What is the stack? 

• What is the heap? 

• How are the stack and heap 
different? 

• What is the .bss segment? 

• What is the .data segment?



Here’s how a C program is laid out in memory (simplified)
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• What is the stack? 

• What is the heap? 

• How are the stack and heap 
different? 

• What is the .bss segment? 

• What is the .data segment? 

• What is the .text segment?



C Arrays
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• What is an array?



C Arrays
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• What is an array? 

• How much memory is allocated for these 
char buffers? Assume a 32-bit machine w/ 
4-byte word size
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C Arrays
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• What is an array? 

• How much memory is allocated for these char 
buffers? Assume a 32-bit machine w/ 4-byte 
word size 

• Is this memory allocated on the stack or the 
heap? 

• Will the program throw an error if you write 
beyond the buffer? 

• Why or why not?



What is a function in C?
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What is a function in C?
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Why are we talking about C?
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Why are we talking about C?
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What is the relationship between a function and the stack?
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What is the relationship between a function and the stack?
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• We implement function calls via the stack —> using push and pop to keep 
track of where in the function we are 

• Example:



Stack Frame Organization
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• What is a stack frame? 

• What is a return address? 

• Where does a return address go in a 
stack frame?



Stack Frame Organization
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• Stacks are divided into frames 

• Each frame stores locals + args to called 
functions 

• call will push the return address (e.g., where you 
were previously) onto the stack 

• Stack pointer points to the top of the stack 
(%esp register in x86) 

• x86: stack grows down (from high to low 
addresses) 

• Frame pointer points to the caller’s frame on the 
stack (%ebp in x86)



Understanding Function Calls
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• What is the caller and what is the callee? 

• Both are functions! Even main is a function. 

• What is the responsibility of the caller? 

• Pass arguments, save return address, call 
new function 

• What is the responsibility of the callee? 

• Save old FP, set FP = SP, allocate stack 
space for local storage
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Understanding Function Calls
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• What is the caller and what is the callee? 

• Both are functions! Even main is a function. 

• What are the responsibilities of the caller? 

• Push arguments, save return address, call 
new function 

• What is the responsibility of the callee? 

• Save old FP, set FP = SP, allocate stack 
space for local storage



Understanding Function Calls
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Understanding Function Calls
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• What is the caller and what is the callee? 

• Both are functions! Even main is a function. 

• What are the responsibilities of the caller? 

• Push arguments, save return address, call 
new function 

• What is the responsibility of the callee? 

• Save old FP, set FP = SP, allocate stack 
space for local storage



Understanding Function Returns
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• What does the callee do when returning? 

• Pop local storage 

• Set SP = FP 

• Pop frame pointer 

• Pop return address and ret 

• What does the caller do when returning? 

• Pop arguments and continue



Understanding Function Returns
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Understanding Function Returns
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• What does the callee do when returning? 

• Pop local storage 

• Set SP = FP 

• Pop frame pointer 

• Pop return address and ret 

• What does the caller do when returning? 

• Pop arguments and continue



Understanding Function Returns

38

• What does the callee do when returning? 

• Pop local storage 

• Set SP = FP 

• Pop frame pointer 

• Pop return address and ret 

• What does the caller do when returning? 

• Pop arguments and continue



Any questions?
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Smashing the Stack
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What does this function do?
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What’s wrong with this function?
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Where is the return address on the stack?
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What is the return address written to?
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Return Address: 0x41414141



What is shellcode?
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What is shellcode?
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Executing shellcode in vulnerable code
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• Let’s say I have some shellcode 
instructions and the function to the right. 
How might I execute the shellcode?



Smashing the Stack for Fun and Profit
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• Attacker controlled buffer can be overrun to overwrite return address to jump to 
any other point in the stack 

• If that point in the stack has valid instructions, the CPU will start running from 
there 

• E.g., shellcode 

• You can overwrite lots of things 

• Another local variable, saved frame pointer, function arguments, even deeper 
stack frames, exception control data…. anything that is valid to write to on 
the stack!



Why does this happen?
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Why does this happen?
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• The C language is weakly typed 

• Allows writing arbitrary values to arbitrary locations in memory (e.g., all arrays are the 
same under the hood, it’s just bytes) 

• Control flow is dynamic and based on memory 

• Return addresses, function pointers, jump tables 

• If you overwrite these you can change control flow 

• The processor doesn’t know the difference between code and data 

• This is a common issue in computer security, not just software security 

• Where else?



5-Minute exercise: Defenses against buffer overflows
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• Can we detect the overwriting of the 
return address? How?



One idea: Canaries

52

• Can we detect the overwriting of the 
return address? How? 

• Use a canary – a value the callee 
pushes before the return address and 
check to make sure it aligns with what 
you’re expecting 

• When returning, the callee checks 
canary against a global “gold” copy 
stored as a constant (not on the stack)



Stack Canary Limitations
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• What assumptions am I making about stack canaries that make them useful?  

• Assumption: impossible to subvert control flow without corrupting the canary  

• Can we overwrite the canary with a valid canary value? 

• Sure, if you can read or guess the value 

• Do I always need to overwrite the canary?  

• No, what if the function uses pointers? What if you can overwrite the address 
of a data pointer to point directly at the saved return address? Then writes 
through that pointer will modify the return address without touching the 
canary.
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Stack Canary Limitations
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• What assumptions am I making about stack canaries that make them useful?  

• Assumption: impossible to subvert control flow without corrupting the canary  

• Can we overwrite the canary with a valid canary value? 

• Sure, if you can read or guess the value 

• Do I always need to overwrite the canary?  

• No, what if the function uses pointers? What if you can overwrite the address 
of a data pointer to point directly at the saved return address? Then writes 
through that pointer will modify the return address without touching the 
canary.



Break Time + Attendance
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Codeword: 
Stacking-Pancakes

https://tinyurl.com/cse227-attend

https://tinyurl.com/cse227-attend


The Geometry of Innocent Flesh on the Bone: 
Return-to-libc without Function Calls (on the 

x86)
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Defenses against code vs. data
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• W^X (W xor X) 

• Memory protection policy whereby every page in an address space is either 
writeable or executable but not both 

• Why does this prevent the attacks we discovered previously?



Return-to-libc
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• What is a return-to-libc attack? Return control to system functions to execute 
shellcode 

• What are some issues with the return-to-libc attack that make it hard to exploit 
(in theory?) 

• “Straight line limited” – means you can only enter into one libc function after 
another 

• “Removal limited” – if you remove libc function that aren’t useful, you can 
seriously hamper attackers 

• This paper: Those assumptions are wrong, you don’t even need functions!
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Return-Oriented Programming
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• This paper demonstrates that you don’t even need function calls, but all you 
need are micro sequences of instructions to mess with control flow of a 
program 

• What is the fundamental insight about x86 that enables this attack?
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need are micro sequences of instructions to mess with control flow of a 
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• This paper demonstrates that you don’t even need function calls, but all you 
need are micro sequences of instructions to mess with control flow of a 
program 

• What is the fundamental insight about x86 that enables this attack? 

• x86 instructions are ambiguous and dense, so shifting by a single byte often 
leads to interesting strings of instructions 

• All you need is ret to chain gadgets together 

• Is this true in all architectures?



Return-Oriented Programming
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• What is return-oriented programming? 

• How do you execute return-oriented programming?



Return-Oriented Programming
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• What is return-oriented programming? 

• How do you execute return-oriented programming? 

• Processor executes a ret with %esp (stack pointer) pointing to the bottom 
word of the gadget, serves as a sort of “instruction pointer”



Gadgets Galore
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• What is a useful gadget in this paper? 

• Anything that ends w/ ret and doesn’t alter control flow is good (because we 
can set up the stack the way we like!) 

• Stitch together arbitrary programs out of code gadgets already present in the 
target binary 

• Why do gadgets exist? Compilers commonly add them at the end of a 
function! Very hard to avoid. 

• Can build arbitrary new bad programs that are made completely out of “known 
good” instructions (e.g., libc)
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• What is a useful gadget in this paper? 
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Simple example
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0x00 0xffffffff

%edx

mov %edx, $5

stolen w/ love from UMD



Simple example
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0x00 0xffffffff

%edx

mov %edx, $5

What does this piece of assembly do?

stolen w/ love from UMD



Simple example
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0x00 0xffffffff

%edx 5

mov %edx, $5

What does this piece of assembly do?

stolen w/ love from UMD



Simple example
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0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp
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0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp
What should we place at the first question mark?



Simple example
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0x00 0xffffffff

%edx

mov %edx, $5

.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the first question mark?



Simple example
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0x00 0xffffffff

%edx
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the second question mark?

mov %edx, $5



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place at the second question mark?

mov %edx, $5



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place here?

?

mov %edx, $5



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f 5

%esp
The return address of the next gadget!

next!

mov %edx, $5



Making ROP Hard
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• What are some assumptions made about the location of libc functions that 
make ROP possible?  

• libc is in a fixed location: not true with Address Space Layout 
Randomization (ASLR) 

• Control flow integrity (CFI) 

• Check at run-time if the execution path is allowed by the original program 

• Insert “tags” before each branch target when branching, and first check the 
target’s tag matches expectation 

• Like stack canaries, but for control flow rather than data protection



Making ROP Hard

88

• What are some assumptions made about the location of libc functions that 
make ROP possible?  

• libc is in a fixed location: not true with Address Space Layout 
Randomization (ASLR) 

• Control flow integrity (CFI) 

• Check at run-time if the execution path is allowed by the original program 

• Insert “tags” before each branch target when branching, and first check the 
target’s tag matches expectation 

• Like stack canaries, but for control flow rather than data protection



Making ROP Hard

89

• What are some assumptions made about the location of libc functions that 
make ROP possible?  

• libc is in a fixed location: not true with Address Space Layout 
Randomization (ASLR) 

• Control flow integrity (CFI) 

• Check at run-time if the execution path is allowed by the original program 

• Insert “tags” before each branch target when branching, and first check the 
target’s tag matches expectation 

• Like stack canaries, but for control flow rather than data protection
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Discussion
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What about these attacks surprised you?
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What do these attacks teach us about trust?
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Code vs. Data is a fundamental security issue. Why?

94



For next time…
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• Make sure you submit your project intention form! Due tomorrow, 1/17 

• Read two side channels papers (course webpage has been updated post 
illness) and be ready to discuss them 

• Come chat with me about your projects, if you want them to be good :) 


