CSE127, Computer Security

Web Security |l

UCSan Diego

Housekeeping

General course things to know

® PA2 was due
® Grades coming this week

® PA3 is out! Due on 2/10, note the bump up w/ midterm

® Midterm is 2/12, during class hours, location Center Hall 109
® Class topics will go through web security (2/5) and include PA3 material
® One sheet of paper front and back is allowed as a “cheatsheet”

® You must bring photo ID to the exam!

Previously on CSE127...

Webs of webs
® \We started talking about the web

® The basic interaction model, HTTP. cookies, etc.

® \We learned the web lives on top of the Internet and is primarily a mechanism
to connect documents together

® But today, websites can do lots of things... run code, interface with OS, etc.

® Big attack surface

Today's lecture — Web Security

Learning Objectives

® Understand the basic browser execution model, the DOM, and the idea that
websites are programs

® | carn about the Same-Origin Policy — the fundamental security policy that
runs all of the web

® Understand the concepts of three common web attacks:

® |njection attacks

® CSRF attacks

® XSS attacks

Web Execution

Recall from last time...
Client / Server Model

¢
(=)

Client Web Server

o~
J

Recall from last time...
Client / Server Model

Where in these components is there code running?

¢
(=)

Client Web Server

() | Q

o~
J

Recall from last time...
Client / Server Model

Where in these components is there code running?

¢
(=)

Client

Code is running on the server
(e.q., Python, Go, C), on the
client (e.g., Chrome, Firetox),
and in the client (e.q.,
JavaScript)

G -]
~

] (s
J

G -]
J

o~
J

Web Server

Browser execution model

Browser

RenderViewHost

® Browsers use an inordinate amount of : B
processes to handle modern websites —

® Fach browser window / tab...

L'-r-l-\—-—-------—-—-—, ravwiiddehit vt cr e rrrrr s rrrrrrc e c e rcc - -,

= IPC .
‘i

® | oads and renders content

\\lllllllllIlIIIlllllllIIIIIIIIIIII

LY

® Parses HTML and runs JavaScript

® Fetches subresources (e.g., images,
CSS, JavaScript)

® Responds to events like onClick,
onMouseover, onLoad, onTimeout

https://www.chromium.org/developers/design-documents/multi-process-architecture/

Example Pages: A C

Nested execution model 1 [F

® \Websites may contain frames from other — ——
sources o —
(A)83l o (¢ a0
® Frame: rigiq, visible division] et | | et |
(B |{Aiiciin. [c)iaiisiio. (D |{atieiic
® iFrame: floating, inline frame Ao 18 15
® \Why use frames? : B
® Delegate screen area to content from
another source (e.g., ads)
® Browser provides isolation based on ' —
frame (remember site isolation?); each

frame gets its own rendering process

10 https://www.chromium.org/developers/design-documents/oop-itrames/

11

What is the layout of webpages?

® \Webpages follow a Document Object Model (DOM) — this is the structure of
the page itself (encoded via HTML, sometimes XML)

® The page itselt is a tree of nodes designated by tags (e.g., <div></div>)

Document

Can | modify the layout on the fly?

13

Can | modify the layout on the fly?

® Yes!

® The DOM can be manipulated via code or scripts included on the page
o AKA: everything you see can be rendered dynamically

® Fven the browser can be manipulated via code

® Code can change your window, move you back and torward through
browsing history, read cookies... anything

14

Where is JavaScript running?

® Chrome has developed its own high-

performance JavaScript (and wasm)
engine in C++

® |[f you've ever used node. s, it'sthe
same underlying engine

® ~ 2.3 million lines of C++ code that is
under constant development...

® Seems totally secure?

https://www.chromium.org/developers/design-documents/multi-process-architecture/

15

Where is JavaScript running?

BUGS, NEWS

Chrome zero-day under

active attack: visiting the
wrong site could hijack your
browser

by Pieter Arntz | November 18, 2025

CVE-2025-10585 Vulnerability: A New
Zero-Day Exploit in Chrome’s V8
JavaScript and WebAssembly Engine
Weaponized in Real-World Attacks

https://socprime.com/blog/cve-2025-10585-zero-day-vulnerability/

16

Always remember: websites are programs!

® Partially executed on the client side
® HTML rendering, JavaScript, extensions, etc.
® Partially executed on the server side
® Python, CGl, PHP, ASP, server-side JavaScript (ew), etc.

® And programs, as we know, can have lots of problems...

17

So many problems!

® Code is running in a lot of places, it can be hard to keep track of it all

® And much code is constantly crossing trust boundaries (e.g., the browser
has to safely run user generated JavaScript)

® Many opportunities to confuse the server and client about where data is
coming from, what data it can trust, and what it should do about that data

® How do we handle security on the web?

Same Origin Policy

19

Web Threat Model

® | et's say you're a browser developer, and you're trying to run two different
websites at the same time. What outcomes are you trying to prevent?

20

Web Threat Model

® | et's say you're a browser developer, and you're trying to run two different
websites at the same time. What outcomes are you trying to prevent?

® Evil websites reading private information from other websites (e.g., cookies)
® Evil websites modifying content on other non-evil pages

® Evil websites making requests on behalf of non-evil websites

21

Web Attacker Models

® Several types ot attackers on the web... our main focus is the web attacker

22

Other models (so you're aware)

® Network attacker

http://good.com
http://good.com

23

Other models (so you're aware)

® (Gadget attacker (more on this next time)

http://good.com

24

Lots of variants of web attacker!

http://good.com

25

Web security model

® Much like the OS model, we want to safely browse the web in the presence of
web attackers

® Browsers these days are just like operating systems, need to provide
isolation

Filesystem

26

Web security model

® Much like the OS model, we want to safely browse the web in the presence of
web attackers

® Browsers these days are just like operating systems, need to provide
isolation

Virtual Addresses,
UIDS

Chrome

27

Web security model

® Much like the OS model, we want to safely browse the web in the presence of
web attackers

® Browsers these days are just like operating systems, need to provide
isolation

Virtual Addresses,
UIDS

Chrome

UIDs + ACLs

28

Web security model

® Much like the OS model, we want to safely browse the web in the presence of
web attackers

® Browsers these days are just like operating systems, need to provide
isolation

Virtual Addresses,
UIDS

Chrome evil.com bank.com

UIDs + ACLs

Filesystem

Cookies / Storage

http://evil.com
http://bank.com

29

Web security model

® Much like the OS model, we want to safely browse the web in the presence of
web attackers

® Browsers these days are just like operating systems, need to provide
isolation

Same-Origin

Virtual Addresses,
UIDS

Policy

Chrome bank.com

Same-Origin

evil.com

UIDs + ACLs Policy

Cookies / Storage

Filesystem

http://evil.com
http://bank.com

30

Same origin policy (SOP)
® Origin: isolation unit/trust boundary on the web
® Origin is defined as (scheme, domain, port) triple derived from the URL
® Fate sharing: If you come from the same place, you must be authorizea
® SOP goal: isolate content of different origins

® Confidentiality: script contained in evil.com should not be allowed to read
data in good.com's page

® Integrity: script from evil.com should not be able to modity the content of
good.com's page

http://evil.com
http://good.com
http://evil.com
http://good.com

31

Understanding Origins

® Are these the same origin?

® https://www.google.com, http://www.google.com

32

Understanding Origins
® Are these the same origin?

® https://www.google.com, http://www.google.com

® https://www.google.com:443, https://www.google.com

33

Understanding Origins
® Are these the same origin?

® https://www.google.com, http://www.google.com

® https://www.google.com:443, https://www.google.com

® https://www.google.com:443, https://google.com:443

https://google.com:443

34

Understanding Origins
® Are these the same origin?

® https://www.google.com, http://www.google.com

® https://www.google.com:443, https://www.google.com

® https://www.google.com:443, https://google.com:443

® These are different origins even though they end up on the same
page!

https://google.com:443

35

Understanding Origins
® Are these the same origin?

® https://www.google.com, http://www.google.com

® https://www.google.com:443, https://www.google.com

® https://www.google.com:443, https://google.com:443

® These are different origins even though they end up on the same
page!

® https://www.kumarde.com/cse127/, https://www.kumarde.com/cse227/

https://google.com:443
https://www.kumarde.com/cse227

36

SOP for the DOM

® Each frame in a window has its own origin

® Frame can only access data with the same origin

\p%,evil.com,443)

(https,a.com,443)
(https,a.com,443)

37

SOP for HTTP

® Pages can perform requests across origins

® SOP does not prevent a page from leaking data to another origin by
encoding it in a URL, request body, etc.

® Advertisers with “backroom deals” will often do this on the backend

® SOP does prevent code from directly inspecting and modifying HTTP
responses

38

SOP for Documents

® Can load cross-origin HTML in frames, but cannot inspect or modify the frame
content

—]
LX) —

il

evlil.com

39

SOP for Documents

® Can load cross-origin HTML in frames, but cannot inspect or modify the frame
content

—]
LX) —

il

evlil.com

SOP for Scripts

® Can load scripts across origins! (e.g., jQueryl!)

® Scripts execute with the privileges of the page

——

- =3
[—]

https, good.com, 443

https, good.com, 443

https, evil.com, 443

40

SOP: Cross-Origin Data with JS

y _
https, evil.com, 443 [—— 1
———]

| o

gmall.com

41

SOP: Cross-Origin Data with JS

GET /
Host: evil.com E

y E
https, evil.com, 443 [— 1]
———]

| o

gmall.com

42

http://evil.com

43

SOP: Cross-Origin Data with JS

https,

evil.com,

443

GET /
Host: evil.com E

<sc:ript>

$.get('http://gmail.com/msgs.json’, function(data) {
alert(data):

J

</script>

gmall.com

http://gmail.com/msgs.json'
http://evil.com

44

SOP: Cross-Origin Data with JS

https,

evil.com,

443

GET /
Host: evil.com

<sc:ript>

$.get('http://gmail.com/msgs.json’, function(data) {

alert(data):
]

</script>

GET msgs.json
Host: gmail.com

.

gmall.com

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

45

SOP: Cross-Origin Data with JS

https,

GET /
Host: evil.com E

<script>

$.get('http://gmail.com/msgs.json’, function(data) {

alert(data):
}

</script>

GET msgs.json E
. Host: 1.
evil.com, 443 ot gmal.com ———
[——]
[—_1Mi

. . . gmall.com
Will gmail.com send back msgs.json?

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com
http://gmail.com

46

SOP: Cross-Origin Data with JS

https,

evil.com,

443

GET /
Host: evil.com E

<sc:ript>

$.get('http://gmail.com/msgs.json’, function(data) {

alert(data):
]

</script>

GET msgs.json E
Host: gmail.com ——a

.

HTTP/1.1 200 OK 1 N‘
{key: value} gmall .com

-— -

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

SOP: Cross-Origin Data with JS

GET /
Host: evil.com E

<sc:ript>

$.get('http://gmail.com/msgs.json’, function(data) {

alert(data):
]

</script>

GET msgs.json . —]
. Host: 1.
https, evil.com, 443 ost: gmail.com | ———
———]
[—_1M

HTTP/1.1 200 OK —
Can we read msgs.json? {key: value} gmall.com

-— -
47

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

SOP: Cross-Origin Data with JS

GET /
Host: evil.com E

<script>

$.get('http://gmail.com/msgs.json’, function(data) {

alert(data):
]

</script>

GET msgs.json . —]
. Host: il
https, evil.com, 443 R ———

Blo.cked by SOP ey —— %M
w cannot {key: value} gmall .com

read contents D

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com
http://evil.com

49

SOP: Cross-Origin Data with Embedded JS

GET /
Host: evil.com E

<script src = “http://gmail.com/chat.js"></script>

https, evil.com, 443 [—— 1
—]
|

gmall.com

http://gmail.com/chat.js
http://evil.com

50

SOP: Cross-Origin Data with Embedded JS

GET /
Host: evil.com E

<script src = “http://gmail.com/chat.js"></script>

GET /chat.js
Host: gmail.com

—_—

$.get("http://gmail.com/chat.json", function(data)... [—1
https, evil.com, 443 — 00— [
|

gmall.com

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

GET /
Host: evil.com E

https, evil.com, 443 — =
GET /chat.json E
Host: gmail.com |

—_— .
gmaill.com

Will gmail.com send back chat.json?

S

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

GET /
Host: evil.com E

https, evil.com, 443 — =
GET /chat.json E
Host: gmail.com |

—_—m—-—

: 2
Can we read chat.json? TTP/1 1 200 OK
{key: value}

52
-—m

gmall.com

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

GET /
Host: evil.com E

https, evil.com, 443 D e —a
GET /chat.json E
Blocked by SOP Host: gmail.com |

Even though script came -

from gmail.com, ran with HTTP/1.1 200 OK
evil.com's privileges {key: value}

-— B . ..

gmall.com

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com
http://evil.com

54

Aside: Cross-Origin Resource Sharing

® Cross-Origin Resource Sharing (CORS) is a mechanism in browsers that allow
servers to “opt-out” of SOP for specitic resources

® Setin HTTP headers

e Access—Control-Allow-0Origiln

e Access—-Control—-Allow—Headers

e ANccess—-Control-Allow—-Credentials

e Access—-Control-Expose—-Headers

® Notoriously tricky to check appropriately, a deep well of pain...

Aside: Cross-Origin Resource Sharing

® Cross-Origin Resource Sharing (CORS) is a mechanism in browsers that allow

_ CVE-2019-9580 - StackStorm exploiting CORS nuli
origin to gain RCE < 2.9.3 and 2.10.3

Prior to 2.10.3/2.9.3, If the origin of the request was unknown, we would return null. null can result in a
successful request from an unknown origin in some clients. Allowing the possibility of XSS style attacks
against the StackStorm API.

e Access—-Control-Expose—-Headers

® Notoriously tricky to check appropriately, a deep well of pain...

55

56

SOP for Images

® Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

® Side channels can still leak data, e.g., img.width

https, good.com, 443

——]
[
[——]
]

https, evil.com, 443

S7

SOP for Images

® Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

® Side channels can still leak data, e.g., img.width

https, good.com, 443

——]
[
[——]
]

https, fb.com, 443

https, evil.com, 443

58

SOP for Images

® Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

® Side channels can still leak data, e.g., img.width

https, good.com, 443

—)

———
ogged in? =]
———

https, fb.com, 443

https, evil.com, 443

59

SOP for Images

® Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

® Side channels can still leak data, e.g., img.width

https, good.com, 443

[—]

———

ogged in?]

https, evil.com, 443 2 . ———
= § https, fb.com, 443

60

SOP for Images

® Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

® Side channels can still leak data, e.g., img.width

https, good.com, 443

f img.width < 30px [—1

leak login status [— 1

ogged in? e

https, evil.com, 443 2 . ———
= § https, fb.com, 443

61

SOP for Cookies

® Cookies are special, so they get their own slightly different definition of origin
® Cookie SOP: (scheme, domain, path)
® (https, cseweb.used.edu, /classes/wi26/cse127-a)

® Server can declare domain property for any cookie

® Set-Cookie: <cookie-name>=<cookie-value>: Domain=<domain-value>

SOP: Cookie Scope Setting

® \What domains can a web server set cookies for?

® domain: any domain-suffix of URL-hostname, except “public suffixes”

® host = "|login.site.com," can set login.site.com, site.com, but not .com

® path: can always be set to anything

PUBLIC SUFFIX LIST

LEARN MORE | THELIST | SUBMIT AMENDMENTS

A "public suffix" is one under which Internet users can (or historically could) directly register names. Some examples of public suffixes are com, co.uk and
pvt.k1l2.ma.us. The Public Suffix List is a list of all known public suffixes.

The Public Suffix List is an initiative of Mozilla, but is maintained as a community resource. It is available for use in any software, but was originally created
to meet the needs of browser manufacturers. It allows browsers to, for example:

» Avoid privacy-damaging "supercookies" being set for high-level domain name suffixes
» Highlight the most important part of a domain name in the user interface
» Accurately sort history entries by site

We maintain a fuller (although not exhaustive) list of what people are using it for. If you are using it for something else, you are encouraged to tell us,
because it helps us to assess the potential impact of changes. For that, you can use the psl-discuss mailing list, where we consider issues related to the
maintenance, format and semantics of the list. Note: please do not use this mailing list to request amendments to the PSL's data.

Itis in the interest of Internet registries to see that their section of the list is up to date. If it is not, their customers may have trouble setting cookies, or data
about their sites may display sub-optimally. So we encourage them to maintain their section of the list by submitting amendments.

http://login.site.com

63

How do we decide to send cookies?

® Browser sends all cookies in a URL's scope:
® Cookie's domain is a domain suftix of URLs domain

® Cookie's path is a prefix of the URL path

64

How do we decide to send cookies?

Cookie 1: Cookie 2: Cookie 3:
name = mycookie name = mycookie2 name = mycookie3

value = value value = value value = value
domain = login.site.com domain = site.com domain = site.com
path =/ path =/ path = /my/home

http://login.site.com
http://site.com

65

How do we decide to send cookies?

Cookie 1:
name = mycookie

value = value

domain = Jogin.site.com
path =/

Cookie 2: Cookie 3:

name = mycookieZ name = mycookie3
value = value value = value
domain = site.com domain = site.com
path =/ path = /my/home

Request to URL:

checkout.site.com

login.site.com

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

66

How do we decide to send cookies?

Cookie 1:
name = mycookie

value = value

domain = Jogin.site.com
path =/

Cookie 2:

name = mycookie2
value = value
domain = site.com

path =/

Request to URL:

checkout.site.com

No

Yes

Cookie 3:

name = mycookie3
value = value
domain = site.com
path = /my/home

No

login.site.com

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

67/

How do we decide to send cookies?

Cookie 1:
name = mycookie

value = value

domain = Jogin.site.com
path =/

Cookie 2:

name = mycookie2
value = value
domain = site.com

path =/

Request to URL:

checkout.site.com

No

Yes

Cookie 3:

name = mycookie3
value = value
domain = site.com
path = /my/home

No

login.site.com

Yes

Yes

No

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

68

How do we decide to send cookies?

Cookie 1:
name = mycookie

value = value

domain = Jogin.site.com
path =/

Cookie 2:

name = mycookieZ
value = value
domain = site.com

path =/

Request to URL:

Cookie 3:

name = mycookie3
value = value
domain = site.com
path = /my/home

checkout.site.com No Yes No
login.site.com Yes Yes No
login.site.com/my/home Yes Yes Yes

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

69

How do we decide to send cookies?

Cookie 1:
name = mycookie
value = value

domain = Jogin.site.com
path =/

Cookie 2:

name = mycookieZ
value = value
domain = site.com

path =/

Request to URL:

Cookie 3:
name = mycookie3

value = value
domain = site.com
path = /my/home

checkout.site.com No Yes No
login.site.com Yes Yes No
login.site.com/my/home Yes Yes Yes
site.com/my No Yes No

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

Web Attacks

/1

Three classical web attacks
e Cross-Site Request Forgery (CSRF)

® SQL Injection

e Cross-Site Scripting (XSS)

® You will implement all three in PA3!

/2

Cross-Site Request Forgery

® Recall: Browsers send cookies with requests all the time. How?

® |f a user clicked a link (on a website, or even in email)
® |f another page embedded the target page in an iframe

® |f a client-side script issued the request

/3

Cross-Site Request Forgery

® Recall: Browsers send cookies with requests all the time. How?

® |f a user clicked a link (on a website, or even in email)
® |f another page embedded the target page in an iframe
® |f a client-side script issued the request

® Doesn't matter where the request comes from, only thing that matters is the
target of the request

® \Where might there be a problem?

74

Cross-Site Request Forgery

® Recall: Browsers send cookies with requests all the time. How?

® |f a user clicked a link (on a website, or even in email)
® |f another page embedded the target page in an iframe
® |f a client-side script issued the request

® Doesn't matter where the request comes from, only thing that matters is the
target of the request

® \Where might there be a problem?

® Target doesn’t know if the request was intended or authorized by the user

75

Typical Authentication Pattern

'3

—]
]
[—]
———-—

chase.com

http://chase.com

Typical Authentication Pattern

POST /login
username=X, pw=Y
[———]
———
@ C—1
———

chase.com

http://chase.com

77

Typical Authentication Pattern

'3

POST /login

username=X, pw=Y
200 OK

cookie: name=BankAuth, value=329487

—]
———
[—]
———-—

chase.com

http://chase.com

/8

Typical Authentication Pattern

POST /login

username=X, pw=Y
200 OK

cookie: name=BankAuth, value=329487

GET /accounts

—
cookie: name=BankAuth, value=329487

-—-s — e

—]
]
[—]
———-—

chase.com

http://chase.com

/9

Typical Authentication Pattern

POST /login

username=X, pw=Y
200 OK

cookie: name=BankAuth, value=329487

GET /accounts

—
cookie: name=BankAuth, value=329487 200 OK

-— s

POST /transter

—
cookie: name=BankAuth, value=329487
200 OK

—]
]
[—]
———-—

chase.com

http://chase.com

80

CSRF Scenario

® User is signed into chase.com

® Cookie remains in the browser’s state

® User then visits a malicious website, containing the following:

<

form name=.
<lnpu
<1lnpu

er">

RillPayForm action=“https://chase.com/trans:

C name=reciliplent value=badguy>
. amount=10000000>

<script> document.BillPayForm.submit(); </script>

What does the code above do?

http://chase.com
http://attacker.com
https://chase.com/transfer

81

CSRF Scenario

® User is signed into chase.com
® Cookie remains in the browser’s state

® User then visits a malicious website, containing the following:

<form name=BillPayForm action=“https://chase.com/transfer">
<lnput name=recipilient value=badguy>

<input amount=10000000>

<script> document.BillPayForm.submit(); </script>

® Code executes an HTTP Post to chase.com

® Good news, attacker.com can’t see the result of POST request thanks to SOP L.

http://chase.com
http://attacker.com
https://chase.com/transfer

82

CSRF Scenario

® User is signed into chase.com
® Cookie remains in the browser’s state

® User then visits a malicious website, containing the following:

<form name=BillPayForm action=“https://chase.com/transfer">
<lnput name=recipilient value=badguy>

<input amount=10000000>

<script> document.BillPayForm.submit(); </script>

® Code executes an HTTP Post to chase.com

® Good news, attacker.com can’t see the result of POST request thanks to SOP L.

® Bad news, all your money is gone! @

http://chase.com
http://attacker.com
https://chase.com/transfer

83

CSRF Patterns

—]
———
——]
———-—

evil.com

c Currently logged into chase.com

—]
————
——]
———-—

chase.com

http://chase.com
http://evil.com

84

CSRF Patterns

—]
———
——]
———-—

evil.com

GET /
—

c Currently logged into chase.com

—]
————
——]
———-—

chase.com

http://chase.com
http://evil.com

85

CSRF Patterns

GET / Currently logged into chase.com
+—g0
———] ——]
POST /transter
- ——m
——] cookie: name=BankAuth, value=329487 [—]
1 ——m

evil.com chase.com

http://chase.com
http://evil.com

86

Login CSRF (Special Case)

—]
———
——]
———-—

evil.com

'3

Currently not logged into
google.com

—]
————
——]
———-—

google.com

http://google.com
http://evil.com

Login CSRF (Special Case)

Currently not logged into

o ‘ google.com
G .
[———] [———]
———-— ———-—
——] ——]
———-— ———-—

evil.com google.com

http://google.com
http://evil.com

38

Login CSRF (Special Case)

Currently not logged into

GET /
—1 05T /l0gin [——]
——— ———
[—=] username=attacker, PW=pW [—]
———-— ———-—

evil.com google.com

http://google.com
http://evil.com

89

Login CSRF (Special Case)

Currently logged into

GET /
— ‘ google.com as attacker
—— ¢ /login [———]
———-— ———-—
[—=] username=attacker, PW=pW [—]
———-— ———-—
evil.com 200 OK google.com

—
Set-Cookie name=GoogleAuth, val=19040987

http://google.com
http://evil.com
http://google.com

Login CSRF (Special Case)

Currently logged into

GET /
— ‘ google.com as attacker
—— ¢ /login [———]
———-— ———-—
[——=] username=attacker, PW=pW [—]
———-— ———-—
evil.com 200 OK google.com

—
Set-Cookie name=GoogleAuth, val=19040987

Why might an attacker want to do this?

http://google.com
http://evil.com
http://google.com

Login CSRF (Special Case)

Currently logged into

GET /
— ‘ google.com as attacker
—— ¢ /login [———]
———-— ———-—
[—=] username=attacker, PW=pW [—]
———-— ———-—
evil.com 200 OK google.com

—
Set-Cookie name=GoogleAuth, val=19040987

GET /search?g=<sensitive>

ﬁ
name=GoogleAuth, val=19040987

http://google.com
http://evil.com
http://google.com

92

Login CSRF (Special Case)

Currently logged into

GET /
— ‘ google.com as attacker
—— ¢ /login [———]
———-— ———-—
[—=] username=attacker, PW=pW [—]
———-— ———-—
evil.com 200 OK google.com

Attacker can leak private

information without user
knowledge

—
Set-Cookie name=GoogleAuth, val=19040987

GET /search?g=<sensitive>

ﬁ
name=GoogleAuth, val=19040987

http://google.com
http://evil.com
http://google.com

93

CSRF Definition

® "Cross-site request forgery is an attack that forces an end-user to execute

unwanted actions on a web application in which they're currently
authenticated” — OWASP

® Deepak’s version: CSRF lets you secretly masquerade as a user. Not good!
® Fundamentally enabled by cookie side effects (remind you of anything?)

® |ssue happens any place where the user’s browser has some kind of
privileged access via the Web (not just cookies!)

94

Drive-by Pharming

® Home networks generally use “private” addresses (e.g., 192.168.X.X), only
reachable inside the home

® Attack strategy

® User visits malicious site. JavaScript scans home network looking for router
(usually at 192.168.1.1)

® Once JavaScript finds the router, can replace firmware or change DNS to
attacker-controlled server

® Many home routers have easily guessable passwords, e.g., admin:admin

95

CSRF Defenses

® How do we defend against these attacks? We need to ensure that POST is
authentic — i.e., coming from a trusted page

® Secret CSRF tokens
® Referer/Origin Validation

® SameSite Cookies

96

Secret CSRF Tokens

® bank.com includes a random, secret value in every form that the server can validate

<form action="/login" method="post" class="form login-form">

<input type="hidden" name="csrf token" value="434ec/e838ec3lo7efc04154205">
<lnput 1d=%“login" type=“text" name=“login" >

<lnput 1d=“password" type=“password'">

<button class="button button--alternative" type="submit">Log In</button>
</form>

http://bank.com

97

Secret CSRF Tokens

® bank.com includes a random, secret value in every form that the server can validate

<form action="/login" method="post" class="form login-form">

<input type="hidden" name="csrf token" value="434ec/e838ec3lo7efc04154205">
<lnput 1d=%“login" type=“text" name=“login" >

<lnput 1d=“password" type=“password'">

<button class="button button--alternative" type="submit">Log In</button>
</form>

® \ery commonly used defense against CSRF attacks. Any issues?

http://bank.com

98

Secret CSRF Tokens

® bank.com includes a random, secret value in every form that the server can validate

<form action="/login" method="post" class="form login-form">

<input type="hidden" name="csrf token" value="434ecT7e838ec3lo7efc04154205">
<lnput 1d=%“login" type=“text" name=“login" >

<input 1d=%“password" type=“password">

<button class="button button--alternative" type="submit">Log In</button>
</form>

® \ery commonly used defense against CSRF attacks. Any issues?

® Implementation fails (server poorly checks, token only checked sometimes, etc.)
® Token never rotated

® Side channels for token validation (e.g., Spectre)

http://bank.com

99

Defeating CSRF with the Referer header

® By default (usually), when the browser makes an HTTP request, it contains the
Referer, aka the URL of the webpage that is making the request

® Validation of the Reterer header could easily defend against CSRF attacks

® \Why does validation with the Referer header not work all the time?

Defeating CSRF with the Referer header

® By default (usually), when the browser makes an HTTP request, it contains the
Referer, aka the URL of the webpage that is making the request

® Validation of the Reterer header could easily defend against CSRF attacks
® \Why does validation with the Referer header not work all the time?
® Fail-open: Allow requests where there is no Referer header

® Fail-closed: Block requests where there is no Reterer header

100

Extension: Origin header

Origin

Baseline Widely available 9. O

The HTTP origin request header indicates the origin (scheme, hosthame, and port) that caused the
request. For example, if a user agent needs to request resources included in a page, or fetched by

scripts that it executes, then the origin of the page may be included in the request.

101

Today’s Defenses: SameSite Cookies

Set-Cookie

Baseline Widely available * 9) O *» G

The HTTP Set-Cookie response header is used to send a cookie from the server to the user agent,
so that the user agent can send it back to the server later. To send multiple cookies, multiple Set-

Cookie headers should be sent in the same response.

SameSite=<samesite-value> | Optional

Controls whether or not a cookie is sent with cross-site requests, providing some protection

against cross-site request forgery attacks (CSRF).

102

SameSite Cookies

® Cookie option that prevents browser from sending a cookie along with cross-
site requests

® SameSite = Strict Never send a cookie in a cross-site browsing context, even
when following a regular link

® SameSite = Lax Session cookie is allowed when following a navigation link but
blocks it in CSRF-prone request methods, like POST (detault)

® SameSite = None Send cookies from any context

® \Why might this not always work?

103

SameSite Cookies

® Cookie option that prevents browser from sending a cookie along with cross-site
requests

® SameSite = Strict Never send a cookie in a cross-site browsing context, even
when following a regular link

® SameSite = Lax Session cookie is allowed when following a navigation link but
blocks it in CSRF-prone request methods, like POST (default)

® SameSite = None Send cookies from any context

® \Why might this not always work?

® Server has to trust browser to implement correctly. And they might not.

104

CSRF Defenses Today

® Defense in depth — usually some combination of all three defenses

® New paradigm: Fetch metadata

Sec-Fetch-Site header

Baseline Widely available 9. O % %,

The HTTP Sec-Fetch-Site fetch metadata request header indicates the relationship between a

request initiator's origin and the origin of the requested resource.

In other words, this header tells a server whether a request for a resource is coming from the same
origin, the same site, a different site, or is a "user initiated" request. The server can then use this

information to decide if the request should be allowed.

Same-origin requests would usually be allowed by default, but what happens for requests from other
origins may further depend on what resource is being requested, or information in another fetch

metadata request header. By default, requests that are not accepted should be rejected with a 403

response code.

105
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Site

SQL Injection (SQLi)

® \Websites often rely on databases to properly function (e.g., SQL)

® \Websites can be vulnerable to command injection attacks when using user-
provided data to build SQL queries

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL WE'VE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME Robert'); DROP T HOPE YOURE HAPPY.

(OMPUTER TROLBLE. | 'V A WAY= / TABLE Students;-~ 7 {

A\ \ AND T HOPE
; ~ OH, YES, LITTLE “_ YOUVE LEARNED

BOBRY TABLES, t TOSANITIZE YOUR
WE CALL HIM. DATARASE INPUTS,

106

SQL Basics

® Structured Query Language (5QL)

® Example

e SELECT * FROM users where username 1s kumarde and pw 1s 1lovebooks

® Other operators too
* AND, OR, NOT, logical expressions

e Two dashes (--) indicates a comment (until line end)

* - |s astatement terminator

107

Building SQL from user input

import sglite3

conn = sglite3.connect ("users.db")
CUursor = conn.cursor ()
username = 1nput ("Username: ")

password = input ("Password: ")

query — f" mwiy

SELECT * FROM users

WHERE username = '{username}' AND password = '{password}'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

108

Building SQL from user input

import sglite3
username = kumarde

conn = sglite3.connect ("users.db")
cursor = conn.cursor () password = ilovebooks
username = 1nput ("Username: ")

password = input ("Password: ")

query — f" i

SELECT * FROM users

WHERE username = 'kumarde' AND password = 'l1lovebooks'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

109

Building SQL from user input

import sglite3
username = kumarde’

conn = sglite3.connect ("users.db")

cCursor = conn.cursor () password = ilovebooks
username = 1nput ("Username: ") What happens’?
password = 1nput ("Password: ")

query — f"""

SELECT * FROM users

WHERE username = '{username}' AND password = '{password}'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

110

Building SQL from user input

import sglite3
username = kumarde’

conn = sglite3.connect ("users.db")

cursor = conn.cursor () password = ilovebooks
username = 1nput ("Username: ") What happens’?
password = 1nput ("Password: ")

query — f"""

SELECT * FROM users

WHERE username = 'kumarde'' AND password = 'i1lovebooks'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

111

Building SQL from user input

import sglite3
username = kumarde’

conn = sglite3.connect ("users.db")

Cursor = conn.cursor () password = ilovebooks
username = 1nput ("Username: ") What happens’?

password = input ("Password: ")

query = fFrnn

SELECT * FROM users Program crash!
WHERE username = 'kumarde'' AND password = 'i1lovebooks'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

112

Building SQL from user input

import sglite3
username = admin

conn = sglite3.connect ("users.db")

cursor = conn.cursor () password ="OR "1'="1
username = 1nput ("Username: ") What happens’?
password = 1input ("Password: ")

query = fFrnmn

SELECT * FROM users

WHERE username = '{username}' AND password = '{password}'

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

113

Building SQL from user input

import sglite3
username = admin

conn = sglite3.connect ("users.db")

cursor = conn.cursor () password ="0OR'"1'="1
username = 1nput ("Username: ") What happens?
password = 1input ("Password: ")

query = fFrnmn

SELECT * FROM users

WHERE username = 'admin' AND password = '' OR '"1'='1"

mwimw

Cursor.execute (query)
result = cursor.fetchone ()

114

Building SQL from user input

import sglite3
username = admin

conn = sglite3.connect ("users.db")

cursor = conn.cursor () password ="0OR'"1'="1
username = 1nput ("Username: ") What happens?
password = 1nput ("Password: ")

query = fFrnn

SELECT * FROM users

WHERE username = 'admin' AND password = '' OR '"1'='1"

mwimw

cursor.execute (query)

result = cursor.fetchone () Attacker can successfully

login as an admin user.

115

SQLi Attack Variants

® - drop table users --

® Deletes the users table from the database
® Any set of SQL commands will do

® Can read fields, find elements, write tables

® \What is the fundamental design flaw that enables SQL injection?

116

SQLi Attack Variants

® - drop table users --

® Deletes the users table from the database
® Any set of SQL commands will do

® Can read fields, find elements, write tables

® \What is the fundamental design flaw that enables SQL injection?

® Mixing code and data... just like in buffer overtlow attacks

117

Defending against SQL attacks

® Don’t mix code and data. Instead, use prepared statements

import sglite3

conn = sglite3.connect ("users.db")
CUursor = conn.cursor ()

username = 1nput ("Username: ")
password = 1nput ("Password: ")
query = ARIRL

SELECT * FROM users

WHERE username = ? AND password = 7

mwwmwn

cursor.execute (query, (username, password))
result = cursor.fetchone ()

118

Defending against SQL attacks

® Don’t mix code and data. Instead, use prepared statements

® Every language supports prepared statements, allowing you to independently
process query inputs and SQL inputs

® The database handles all escaping
® User input is never incorrectly treated as SQL

® Prepared statements are the industry standard... use them.

119

Cross Site Scripting (XSS)

® "Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites” — OWASP

® \Where SQL injection is a piece of malicious code executed on the victim’s
server...

® XSS is malicious code executed on a victim’s browser.

120

Cross Site Scripting (XSS)

® Key idea: Indirect attack on browser via a server

® Malicious content is injected via URL encoding (query parameters, form
submission) and reflected back by the server in the response

® Browser then executes code server providea

121

Very simple XSS example

—]
_ ———
sau —]

= (C=

Web Server Client

122

123

Very simple XSS example

—]
_ ———
sau —]

———

Web Server

(=)

Client

Very simple XSS example o

_ 11—
sau —]
= (C=

Web Se
rver Client

Very simple XSS example

M
J— ﬁ

Web Server Client

125

Very simple XSS example

[—]

kumarde

@ — nadiah

Web Server Client

126

Very simple XSS example

update customers E /add

———-— C =)

Web Server Cliont

127

Very simple XSS example

B

y

Attacker
update customers
l " I —

Web Server

Client

128

Very simple XSS example

.,// : ’

Attacker

update customers

Web Server Client

<script>
// steal users

</script>
129

Very simple XSS example

[—]

kumarde

@ — nadiah

W
eb Server Client

<script>
// steal users

</script>
130

Very simple XSS example

[—]

kumarde

Attackers code will run on Web Server
the browser when the <script>

Client

browser “displays” the // steal users
script! </script>

131

Preventing XSS: filtering

® Key problem: rendering raw HTML from user input

® | et's just filter it!

® \ery hard in practice.

® Blocking “<"” and “>" is not enough; lots of ways to get code to execute in a
browser...

® Fvent handlers, other tags, not just script tags...
® Example: filter out <script
® J<scriptsrc="...">

® J<scr<scriptip src="...">

132

Preventing XSS: Content Security Policy

® Content Security Policy eliminates XSS by specitying the domains that the
browser should consider to be valid sources of executable scripts

e Content-Security-Policy: default-src ‘self’ (means
content can only be loaded from exact same domaln, no
inline scripts)

e Content-Security-Policy: default-src ‘self’, 1mg-src *;
media-src medlial.com; script-src good.com

® CSP is served via HTTP headers, or can be embedded in pages via meta
HTML object in DOM

® Modern standard defense against XSS attacks

133

http://good.com

Recap + next time...

® \Web is windy, twisted, complicated, and hard to reason about

® | ots of growth in web comes from use cases, as those evolved, so too did
security

® Evergreen lesson: mixing code and data is bad

® Double evergreen lesson: Sanitize inputs, but don’t do it yourself (libraries
will help you here)

® You'll implement all these attacks in PA3

® Next time we'll talk about web measurement and how you're tracked on the
web — two of my favorite topics!

134

