
CSE127, Computer Security
Web Security II

Housekeeping
General course things to know

• PA2 was due

• Grades coming this week

• PA3 is out! Due on 2/10, note the bump up w/ midterm

• Midterm is 2/12, during class hours, location Center Hall 109

• Class topics will go through web security (2/5) and include PA3 material

• One sheet of paper front and back is allowed as a “cheatsheet”

• You must bring photo ID to the exam!

2

Previously on CSE127…
Webs of webs

• We started talking about the web

• The basic interaction model, HTTP, cookies, etc.

• We learned the web lives on top of the Internet and is primarily a mechanism
to connect documents together

• But today, websites can do lots of things… run code, interface with OS, etc.

• Big attack surface

3

Today’s lecture — Web Security
Learning Objectives

• Understand the basic browser execution model, the DOM, and the idea that
websites are programs

• Learn about the Same-Origin Policy — the fundamental security policy that
runs all of the web

• Understand the concepts of three common web attacks:

• Injection attacks

• CSRF attacks

• XSS attacks

4

Web Execution

5

Recall from last time…
Client / Server Model

Client Web Server

Recall from last time…
Client / Server Model

Client Web Server

Where in these components is there code running?

Recall from last time…
Client / Server Model

Client Web Server

Where in these components is there code running?

Code is running on the server
(e.g., Python, Go, C), on the
client (e.g., Chrome, Firefox),
and in the client (e.g.,
JavaScript)

Browser execution model

9

• Browsers use an inordinate amount of
processes to handle modern websites

• Each browser window / tab…

• Loads and renders content

• Parses HTML and runs JavaScript

• Fetches subresources (e.g., images,
CSS, JavaScript)

• Responds to events like onClick,
onMouseover, onLoad, onTimeout

https://www.chromium.org/developers/design-documents/multi-process-architecture/

Nested execution model

10

• Websites may contain frames from other
sources

• Frame: rigid, visible division

• iFrame: floating, inline frame

• Why use frames?

• Delegate screen area to content from
another source (e.g., ads)

• Browser provides isolation based on
frame (remember site isolation?); each
frame gets its own rendering process

https://www.chromium.org/developers/design-documents/oop-iframes/

What is the layout of webpages?

11

• Webpages follow a Document Object Model (DOM) — this is the structure of
the page itself (encoded via HTML, sometimes XML)

• The page itself is a tree of nodes designated by tags (e.g., <div></div>)

Can I modify the layout on the fly?

12

Can I modify the layout on the fly?

13

• Yes!

• The DOM can be manipulated via code or scripts included on the page

• AKA: everything you see can be rendered dynamically

• Even the browser can be manipulated via code

• Code can change your window, move you back and forward through
browsing history, read cookies… anything

Where is JavaScript running?

14

• Chrome has developed its own high-
performance JavaScript (and wasm)
engine in C++

• If you’ve ever used node.js, it’s the
same underlying engine

• ~ 2.3 million lines of C++ code that is
under constant development…

• Seems totally secure?

https://www.chromium.org/developers/design-documents/multi-process-architecture/

Where is JavaScript running?

15
https://socprime.com/blog/cve-2025-10585-zero-day-vulnerability/

Always remember: websites are programs!

16

• Partially executed on the client side

• HTML rendering, JavaScript, extensions, etc.

• Partially executed on the server side

• Python, CGI, PHP, ASP, server-side JavaScript (ew), etc.

• And programs, as we know, can have lots of problems…

So many problems!

17

• Code is running in a lot of places, it can be hard to keep track of it all

• And much code is constantly crossing trust boundaries (e.g., the browser
has to safely run user generated JavaScript)

• Many opportunities to confuse the server and client about where data is
coming from, what data it can trust, and what it should do about that data

• How do we handle security on the web?

Same Origin Policy

18

Web Threat Model

19

• Let’s say you’re a browser developer, and you’re trying to run two different
websites at the same time. What outcomes are you trying to prevent?

Web Threat Model

20

• Let’s say you’re a browser developer, and you’re trying to run two different
websites at the same time. What outcomes are you trying to prevent?

• Evil websites reading private information from other websites (e.g., cookies)

• Evil websites modifying content on other non-evil pages

• Evil websites making requests on behalf of non-evil websites

Web Attacker Models

21

• Several types of attackers on the web… our main focus is the web attacker

evil.com
evil.com

Other models (so you’re aware)

22

• Network attacker

good.com
good.com

http://good.com
http://good.com

Other models (so you’re aware)

23

• Gadget attacker (more on this next time)

good.com

bad.png bad.js

bad.css

http://good.com

Lots of variants of web attacker!

24

evil.com good.com

evil.com

evil.com

good.com

http://good.com

Web security model

25

• Much like the OS model, we want to safely browse the web in the presence of
web attackers

• Browsers these days are just like operating systems, need to provide
isolation

Zoom Chrome

Filesystem

Web security model

26

• Much like the OS model, we want to safely browse the web in the presence of
web attackers

• Browsers these days are just like operating systems, need to provide
isolation

Zoom Chrome

Filesystem

Virtual Addresses,
UIDS

Web security model

27

• Much like the OS model, we want to safely browse the web in the presence of
web attackers

• Browsers these days are just like operating systems, need to provide
isolation

Zoom Chrome

Filesystem

Virtual Addresses,
UIDS

UIDs + ACLs

Web security model

28

• Much like the OS model, we want to safely browse the web in the presence of
web attackers

• Browsers these days are just like operating systems, need to provide
isolation

Zoom Chrome

Filesystem

Virtual Addresses,
UIDS

UIDs + ACLs

evil.com bank.com

Cookies / Storage

http://evil.com
http://bank.com

Web security model

29

• Much like the OS model, we want to safely browse the web in the presence of
web attackers

• Browsers these days are just like operating systems, need to provide
isolation

Zoom Chrome

Filesystem

Virtual Addresses,
UIDS

UIDs + ACLs

evil.com bank.com

Cookies / Storage

Same-Origin
Policy

Same-Origin
Policy

http://evil.com
http://bank.com

Same origin policy (SOP)

30

• Origin: isolation unit/trust boundary on the web

• Origin is defined as (scheme, domain, port) triple derived from the URL

• Fate sharing: If you come from the same place, you must be authorized

• SOP goal: isolate content of different origins

• Confidentiality: script contained in evil.com should not be allowed to read
data in good.com's page

• Integrity: script from evil.com should not be able to modify the content of
good.com's page

http://evil.com
http://good.com
http://evil.com
http://good.com

Understanding Origins

31

• Are these the same origin?

• https://www.google.com, http://www.google.com

Understanding Origins

32

• Are these the same origin?

• https://www.google.com, http://www.google.com

• https://www.google.com:443, https://www.google.com

Understanding Origins

33

• Are these the same origin?

• https://www.google.com, http://www.google.com

• https://www.google.com:443, https://www.google.com

• https://www.google.com:443, https://google.com:443

https://google.com:443

Understanding Origins

34

• Are these the same origin?

• https://www.google.com, http://www.google.com

• https://www.google.com:443, https://www.google.com

• https://www.google.com:443, https://google.com:443

• These are different origins even though they end up on the same
page!

https://google.com:443

Understanding Origins

35

• Are these the same origin?

• https://www.google.com, http://www.google.com

• https://www.google.com:443, https://www.google.com

• https://www.google.com:443, https://google.com:443

• These are different origins even though they end up on the same
page!

• https://www.kumarde.com/cse127, https://www.kumarde.com/cse227

https://google.com:443
https://www.kumarde.com/cse227

SOP for the DOM

36

• Each frame in a window has its own origin

• Frame can only access data with the same origin

SOP for HTTP

37

• Pages can perform requests across origins

• SOP does not prevent a page from leaking data to another origin by
encoding it in a URL, request body, etc.

• Advertisers with “backroom deals” will often do this on the backend

• SOP does prevent code from directly inspecting and modifying HTTP
responses

SOP for Documents

38

• Can load cross-origin HTML in frames, but cannot inspect or modify the frame
content

good.com

evil.com

evil.com

SOP for Documents

39

• Can load cross-origin HTML in frames, but cannot inspect or modify the frame
content

good.com

evil.com

evil.com

SOP for Scripts

40

• Can load scripts across origins! (e.g., jQuery!)

• Scripts execute with the privileges of the page

https, good.com, 443

https, good.com, 443

https, evil.com, 443

SOP: Cross-Origin Data with JS

41

https, evil.com, 443

evil.com

gmail.com

SOP: Cross-Origin Data with JS

42

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

http://evil.com

SOP: Cross-Origin Data with JS

43

https, evil.com, 443

evil.com

gmail.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET /
Host: evil.com

http://gmail.com/msgs.json'
http://evil.com

SOP: Cross-Origin Data with JS

44

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET msgs.json
Host: gmail.com

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

SOP: Cross-Origin Data with JS

45

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET msgs.json
Host: gmail.com

Will gmail.com send back msgs.json?

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com
http://gmail.com

SOP: Cross-Origin Data with JS

46

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET msgs.json
Host: gmail.com

HTTP/1.1 200 OK
{key: value}

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

SOP: Cross-Origin Data with JS

47

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET msgs.json
Host: gmail.com

HTTP/1.1 200 OK
{key: value}Can we read msgs.json?

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com

SOP: Cross-Origin Data with JS

48

https, evil.com, 443

evil.com

gmail.com

GET /
Host: evil.com

<script>
$.get(‘http://gmail.com/msgs.json', function(data) {
 alert(data);
}
</script>

GET msgs.json
Host: gmail.com

HTTP/1.1 200 OK
{key: value}

Blocked by SOP
evil.com cannot
read contents

http://evil.com
http://gmail.com/msgs.json'
http://gmail.com
http://evil.com

SOP: Cross-Origin Data with Embedded JS

49

https, evil.com, 443

evil.com

gmail.com

<script src = “http://gmail.com/chat.js"></script>

GET /
Host: evil.com

http://gmail.com/chat.js
http://evil.com

SOP: Cross-Origin Data with Embedded JS

50

https, evil.com, 443

evil.com

gmail.com

<script src = “http://gmail.com/chat.js"></script>

GET /
Host: evil.com

$.get(“http://gmail.com/chat.json", function(data)…

GET /chat.js
Host: gmail.com

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

51

https, evil.com, 443

evil.com

gmail.com

<script src = “http://gmail.com/chat.js"></script>

GET /
Host: evil.com

$.get(“http://gmail.com/chat.json", function(data)…

GET /chat.js
Host: gmail.com

Will gmail.com send back chat.json?

GET /chat.json
Host: gmail.com

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

52

https, evil.com, 443

evil.com

gmail.com

<script src = “http://gmail.com/chat.js"></script>

GET /
Host: evil.com

$.get(“http://gmail.com/chat.json", function(data)…

GET /chat.js
Host: gmail.com

GET /chat.json
Host: gmail.com

HTTP/1.1 200 OK
{key: value}

Can we read chat.json?

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com

SOP: Cross-Origin Data with Embedded JS

53

https, evil.com, 443

evil.com

gmail.com

<script src = “http://gmail.com/chat.js"></script>

GET /
Host: evil.com

$.get(“http://gmail.com/chat.json", function(data)…

GET /chat.js
Host: gmail.com

GET /chat.json
Host: gmail.com

HTTP/1.1 200 OK
{key: value}

Blocked by SOP
Even though script came
from gmail.com, ran with

evil.com's privileges

http://gmail.com/chat.js
http://evil.com
http://gmail.com/chat.json
http://gmail.com
http://gmail.com
http://evil.com

Aside: Cross-Origin Resource Sharing

54

• Cross-Origin Resource Sharing (CORS) is a mechanism in browsers that allow
servers to “opt-out” of SOP for specific resources

• Set in HTTP headers

• Access-Control-Allow-Origin

• Access-Control-Allow-Headers

• Access-Control-Allow-Credentials

• Access-Control-Expose-Headers

• Notoriously tricky to check appropriately, a deep well of pain…

Aside: Cross-Origin Resource Sharing

55

• Cross-Origin Resource Sharing (CORS) is a mechanism in browsers that allow
servers to “opt-out” of SOP for specific resources

• Set in HTTP headers

• Access-Control-Allow-Origin

• Access-Control-Allow-Headers

• Access-Control-Allow-Credentials

• Access-Control-Expose-Headers

• Notoriously tricky to check appropriately, a deep well of pain…

SOP for Images

56

• Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

• Side channels can still leak data, e.g., img.width

https, evil.com, 443

https, good.com, 443

SOP for Images

57

• Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

• Side channels can still leak data, e.g., img.width

https, evil.com, 443

https, good.com, 443

https, fb.com, 443

SOP for Images

58

• Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

• Side channels can still leak data, e.g., img.width

https, evil.com, 443

https, good.com, 443

https, fb.com, 443

logged in?

SOP for Images

59

• Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

• Side channels can still leak data, e.g., img.width

https, evil.com, 443

https, good.com, 443

https, fb.com, 443

logged in?

SOP for Images

60

• Browser renders cross-origin images, but SOP prevents page from inspecting
individual pixels

• Side channels can still leak data, e.g., img.width

https, evil.com, 443

https, good.com, 443

https, fb.com, 443

logged in?

If img.width < 30px
 leak login status

SOP for Cookies

61

• Cookies are special, so they get their own slightly different definition of origin

• Cookie SOP: (scheme, domain, path)

• (https, cseweb.used.edu, /classes/wi26/cse127-a)

• Server can declare domain property for any cookie

• Set-Cookie: <cookie-name>=<cookie-value>; Domain=<domain-value>

SOP: Cookie Scope Setting

62

• What domains can a web server set cookies for?

• domain: any domain-suffix of URL-hostname, except “public suffixes”

• host = “login.site.com," can set login.site.com, site.com, but not .com

• path: can always be set to anything

http://login.site.com

How do we decide to send cookies?

63

• Browser sends all cookies in a URL’s scope:

• Cookie’s domain is a domain suffix of URL’s domain

• Cookie’s path is a prefix of the URL path

How do we decide to send cookies?

64

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

http://login.site.com
http://site.com

How do we decide to send cookies?

65

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

Request to URL: Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

How do we decide to send cookies?

66

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

Request to URL: Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

How do we decide to send cookies?

67

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

Request to URL: Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

How do we decide to send cookies?

68

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

Request to URL: Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/my

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

How do we decide to send cookies?

69

Cookie 1:
name = mycookie
value = value
domain = login.site.com
path = /

Cookie 2:
name = mycookie2
value = value
domain = site.com
path = /

Cookie 3:
name = mycookie3
value = value
domain = site.com
path = /my/home

Request to URL: Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/my No Yes No

http://login.site.com
http://site.com
http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/my

Web Attacks

70

Three classical web attacks

71

• Cross-Site Request Forgery (CSRF)

• SQL Injection

• Cross-Site Scripting (XSS)

• You will implement all three in PA3!

Cross-Site Request Forgery

72

• Recall: Browsers send cookies with requests all the time. How?

• If a user clicked a link (on a website, or even in email)

• If another page embedded the target page in an iframe

• If a client-side script issued the request

Cross-Site Request Forgery

73

• Recall: Browsers send cookies with requests all the time. How?

• If a user clicked a link (on a website, or even in email)

• If another page embedded the target page in an iframe

• If a client-side script issued the request

• Doesn’t matter where the request comes from, only thing that matters is the
target of the request

• Where might there be a problem?

Cross-Site Request Forgery

74

• Recall: Browsers send cookies with requests all the time. How?

• If a user clicked a link (on a website, or even in email)

• If another page embedded the target page in an iframe

• If a client-side script issued the request

• Doesn’t matter where the request comes from, only thing that matters is the
target of the request

• Where might there be a problem?

• Target doesn’t know if the request was intended or authorized by the user

Typical Authentication Pattern

75

chase.com

http://chase.com

Typical Authentication Pattern

76

chase.com

POST /login

username=X, pw=Y

http://chase.com

Typical Authentication Pattern

77

chase.com

POST /login

username=X, pw=Y

cookie: name=BankAuth, value=329487

200 OK

http://chase.com

Typical Authentication Pattern

78

chase.com

200 OK200 OK

POST /login

username=X, pw=Y

cookie: name=BankAuth, value=329487

200 OK

GET /accounts

cookie: name=BankAuth, value=329487

http://chase.com

Typical Authentication Pattern

79

chase.com

POST /login

username=X, pw=Y

cookie: name=BankAuth, value=329487

200 OK

GET /accounts

cookie: name=BankAuth, value=329487

POST /transfer

cookie: name=BankAuth, value=329487

200 OK

200 OK

http://chase.com

CSRF Scenario

80

• User is signed into chase.com

• Cookie remains in the browser’s state

• User then visits a malicious website, containing the following:

• Code executes an HTTP Post to chase.com

• Good news, attacker.com can’t see the result of POST request thanks to SOP

• Bad news, all your money is gone!

<form name=BillPayForm action=“https://chase.com/transfer">
<input name=recipient value=badguy>
<input amount=10000000>
<script> document.BillPayForm.submit(); </script>

What does the code above do?

http://chase.com
http://attacker.com
https://chase.com/transfer

CSRF Scenario

81

• User is signed into chase.com

• Cookie remains in the browser’s state

• User then visits a malicious website, containing the following:

• Code executes an HTTP Post to chase.com

• Good news, attacker.com can’t see the result of POST request thanks to SOP💪

•

<form name=BillPayForm action=“https://chase.com/transfer">
<input name=recipient value=badguy>
<input amount=10000000>
<script> document.BillPayForm.submit(); </script>

http://chase.com
http://attacker.com
https://chase.com/transfer

CSRF Scenario

82

• User is signed into chase.com

• Cookie remains in the browser’s state

• User then visits a malicious website, containing the following:

• Code executes an HTTP Post to chase.com

• Good news, attacker.com can’t see the result of POST request thanks to SOP💪

• Bad news, all your money is gone! 😭

<form name=BillPayForm action=“https://chase.com/transfer">
<input name=recipient value=badguy>
<input amount=10000000>
<script> document.BillPayForm.submit(); </script>

http://chase.com
http://attacker.com
https://chase.com/transfer

CSRF Patterns

83

chase.comevil.com

Currently logged into chase.com

http://chase.com
http://evil.com

CSRF Patterns

84

chase.comevil.com

GET / Currently logged into chase.com

http://chase.com
http://evil.com

CSRF Patterns

85

chase.comevil.com

GET / Currently logged into chase.com

POST /transfer

cookie: name=BankAuth, value=329487

http://chase.com
http://evil.com

Login CSRF (Special Case)

86

google.comevil.com

Currently not logged into
google.com

http://google.com
http://evil.com

Login CSRF (Special Case)

87

google.comevil.com

GET /
Currently not logged into

google.com

http://google.com
http://evil.com

Login CSRF (Special Case)

88

google.comevil.com

GET /
Currently not logged into

google.com

POST /login

username=attacker, pw=pw

http://google.com
http://evil.com

Login CSRF (Special Case)

89

google.comevil.com

GET /
Currently logged into

google.com as attacker

POST /login

username=attacker, pw=pw

200 OK

Set-Cookie name=GoogleAuth, val=19040987

http://google.com
http://evil.com
http://google.com

Login CSRF (Special Case)

90

google.comevil.com

GET /
Currently logged into

google.com as attacker

POST /login

username=attacker, pw=pw

200 OK

Set-Cookie name=GoogleAuth, val=19040987

Why might an attacker want to do this?

http://google.com
http://evil.com
http://google.com

Login CSRF (Special Case)

91

google.comevil.com

GET /
Currently logged into

google.com as attacker

POST /login

username=attacker, pw=pw

200 OK

Set-Cookie name=GoogleAuth, val=19040987

GET /search?q=<sensitive>

name=GoogleAuth, val=19040987

http://google.com
http://evil.com
http://google.com

Login CSRF (Special Case)

92

google.comevil.com

GET /
Currently logged into

google.com as attacker

POST /login

username=attacker, pw=pw

200 OK

Set-Cookie name=GoogleAuth, val=19040987

GET /search?q=<sensitive>

name=GoogleAuth, val=19040987

Attacker can leak private
information without user

knowledge

http://google.com
http://evil.com
http://google.com

CSRF Definition

93

• “Cross-site request forgery is an attack that forces an end-user to execute
unwanted actions on a web application in which they’re currently
authenticated” — OWASP

• Deepak’s version: CSRF lets you secretly masquerade as a user. Not good!

• Fundamentally enabled by cookie side effects (remind you of anything?)

• Issue happens any place where the user’s browser has some kind of
privileged access via the Web (not just cookies!)

Drive-by Pharming

94

• Home networks generally use “private” addresses (e.g., 192.168.X.X), only
reachable inside the home

• Attack strategy

• User visits malicious site. JavaScript scans home network looking for router
(usually at 192.168.1.1)

• Once JavaScript finds the router, can replace firmware or change DNS to
attacker-controlled server

• Many home routers have easily guessable passwords, e.g., admin:admin

CSRF Defenses

95

• How do we defend against these attacks? We need to ensure that POST is
authentic — i.e., coming from a trusted page

• Secret CSRF tokens

• Referer/Origin Validation

• SameSite Cookies

Secret CSRF Tokens

96

• bank.com includes a random, secret value in every form that the server can validate

• Very commonly used defense against CSRF attacks. Any issues?

• Implementation fails (server poorly checks, token only checked sometimes, etc.)

• Token never rotated

• Side channels for token validation (e.g., Spectre)

<form action="/login" method="post" class="form login-form">
<input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
<input id=“login" type=“text" name=“login" >
<input id=“password" type=“password">
<button class="button button--alternative" type="submit">Log In</button>
</form>

http://bank.com

Secret CSRF Tokens

97

• bank.com includes a random, secret value in every form that the server can validate

• Very commonly used defense against CSRF attacks. Any issues?

• Implementation fails (server poorly checks, token only checked sometimes, etc.)

• Token never rotated

• Side channels for token validation (e.g., Spectre)

<form action="/login" method="post" class="form login-form">
<input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
<input id=“login" type=“text" name=“login" >
<input id=“password" type=“password">
<button class="button button--alternative" type="submit">Log In</button>
</form>

http://bank.com

Secret CSRF Tokens

98

• bank.com includes a random, secret value in every form that the server can validate

• Very commonly used defense against CSRF attacks. Any issues?

• Implementation fails (server poorly checks, token only checked sometimes, etc.)

• Token never rotated

• Side channels for token validation (e.g., Spectre)

<form action="/login" method="post" class="form login-form">
<input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
<input id=“login" type=“text" name=“login" >
<input id=“password" type=“password">
<button class="button button--alternative" type="submit">Log In</button>
</form>

http://bank.com

Defeating CSRF with the Referer header

99

• By default (usually), when the browser makes an HTTP request, it contains the
Referer, aka the URL of the webpage that is making the request

• Validation of the Referer header could easily defend against CSRF attacks

• Why does validation with the Referer header not work all the time?

Defeating CSRF with the Referer header

100

• By default (usually), when the browser makes an HTTP request, it contains the
Referer, aka the URL of the webpage that is making the request

• Validation of the Referer header could easily defend against CSRF attacks

• Why does validation with the Referer header not work all the time?

• Fail-open: Allow requests where there is no Referer header

• Fail-closed: Block requests where there is no Referer header

Extension: Origin header

101

• What is the Origin header proposal in this paper?

• Why does it help with the privacy concerns brought up before?

• What happens when the browser does not add an Origin header?

• Why do they think the Origin header will fix CSRF? Why do they think it’ll be
adopted?

Today’s Defenses: SameSite Cookies

102

SameSite Cookies

103

• Cookie option that prevents browser from sending a cookie along with cross-
site requests

• SameSite = Strict Never send a cookie in a cross-site browsing context, even
when following a regular link

• SameSite = Lax Session cookie is allowed when following a navigation link but
blocks it in CSRF-prone request methods, like POST (default)

• SameSite = None Send cookies from any context

• Why might this not always work?

SameSite Cookies

104

• Cookie option that prevents browser from sending a cookie along with cross-site
requests

• SameSite = Strict Never send a cookie in a cross-site browsing context, even
when following a regular link

• SameSite = Lax Session cookie is allowed when following a navigation link but
blocks it in CSRF-prone request methods, like POST (default)

• SameSite = None Send cookies from any context

• Why might this not always work?

• Server has to trust browser to implement correctly. And they might not.

CSRF Defenses Today

105

• Defense in depth — usually some combination of all three defenses

• New paradigm: Fetch metadata

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Site

SQL Injection (SQLi)

106

• Websites often rely on databases to properly function (e.g., SQL)

• Websites can be vulnerable to command injection attacks when using user-
provided data to build SQL queries

SQL Basics

107

• Structured Query Language (SQL)

• Example

• SELECT * FROM users where username is kumarde and pw is ilovebooks

• Other operators too

• AND, OR, NOT, logical expressions

• Two dashes (--) indicates a comment (until line end)

• ; is a statement terminator

Building SQL from user input

108

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = '{username}' AND password = '{password}'
"""

cursor.execute(query)
result = cursor.fetchone()

Building SQL from user input

109

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = 'kumarde' AND password = 'ilovebooks'
"""

cursor.execute(query)
result = cursor.fetchone()

username = kumarde

password = ilovebooks

Building SQL from user input

110

username = kumarde’

password = ilovebooks

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = '{username}' AND password = '{password}'
"""

cursor.execute(query)
result = cursor.fetchone()

What happens?

Building SQL from user input

111

username = kumarde’

password = ilovebooks

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = 'kumarde'' AND password = 'ilovebooks'
"""

cursor.execute(query)
result = cursor.fetchone()

What happens?

Building SQL from user input

112

username = kumarde’

password = ilovebooks

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = 'kumarde'' AND password = 'ilovebooks'
"""

cursor.execute(query)
result = cursor.fetchone()

What happens?

❌
Program crash!

Building SQL from user input

113

username = admin

password = ‘ OR ‘1’=‘1

What happens?

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = '{username}' AND password = '{password}'
"""

cursor.execute(query)
result = cursor.fetchone()

Building SQL from user input

114

username = admin

password = ‘ OR ‘1’=‘1

What happens?

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = 'admin' AND password = '' OR '1'='1'
"""

cursor.execute(query)
result = cursor.fetchone()

Building SQL from user input

115

username = admin

password = ‘ OR ‘1’=‘1

What happens?

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = f"""
SELECT * FROM users
WHERE username = 'admin' AND password = '' OR '1'='1'
"""

cursor.execute(query)
result = cursor.fetchone() Attacker can successfully

login as an admin user.

SQLi Attack Variants

116

• ‘; drop table users --

• Deletes the users table from the database

• Any set of SQL commands will do

• Can read fields, find elements, write tables

• What is the fundamental design flaw that enables SQL injection?

SQLi Attack Variants

117

• ‘; drop table users --

• Deletes the users table from the database

• Any set of SQL commands will do

• Can read fields, find elements, write tables

• What is the fundamental design flaw that enables SQL injection?

• Mixing code and data… just like in buffer overflow attacks

Defending against SQL attacks

118

• Don’t mix code and data. Instead, use prepared statements

import sqlite3

conn = sqlite3.connect("users.db")
cursor = conn.cursor()

username = input("Username: ")
password = input("Password: ")

query = """
SELECT * FROM users
WHERE username = ? AND password = ?
"""

cursor.execute(query, (username, password))
result = cursor.fetchone()

Defending against SQL attacks

119

• Don’t mix code and data. Instead, use prepared statements

• Every language supports prepared statements, allowing you to independently
process query inputs and SQL inputs

• The database handles all escaping

• User input is never incorrectly treated as SQL

• Prepared statements are the industry standard… use them.

Cross Site Scripting (XSS)

120

• “Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites” – OWASP

• Where SQL injection is a piece of malicious code executed on the victim’s
server…

• XSS is malicious code executed on a victim’s browser.

Cross Site Scripting (XSS)

121

• Key idea: Indirect attack on browser via a server

• Malicious content is injected via URL encoding (query parameters, form
submission) and reflected back by the server in the response

• Browser then executes code server provided

Very simple XSS example

122

Web Server Client

web app

Very simple XSS example

123

Web Server Client

web app

Very simple XSS example

124

Web Server Client

/see

Very simple XSS example

125

Web Server

get customers

Client

/see

Very simple XSS example

126

Web Server

get customers

Client

kumarde
savage
nadiah

/see

Very simple XSS example

127

Web Server

update customers

Client

/add

voelker

Very simple XSS example

128

Web Server Client

update customers /add

Very simple XSS example

129

Web Server Client<script>
// steal users
</script>

update customers /add

Very simple XSS example

130

Web Server Client

get customers /see kumarde
savage
nadiah

<script>
// steal users
</script>

Very simple XSS example

131

Web Server Client

get customers /see kumarde
savage
nadiah

<script>
// steal users
</script>

Attackers code will run on
the browser when the
browser “displays” the

script!

Preventing XSS: filtering

132

• Key problem: rendering raw HTML from user input

• Let’s just filter it!

• Very hard in practice.

• Blocking “<“ and “>” is not enough; lots of ways to get code to execute in a
browser…

• Event handlers, other tags, not just script tags…

• Example: filter out <script

• <script src=“…”>

• <scr<scriptip src=“…”>

Preventing XSS: Content Security Policy

133

• Content Security Policy eliminates XSS by specifying the domains that the
browser should consider to be valid sources of executable scripts

• Content-Security-Policy: default-src ‘self’ (means
content can only be loaded from exact same domain, no
inline scripts)

• Content-Security-Policy: default-src ‘self’, img-src *;
media-src media1.com; script-src good.com

• CSP is served via HTTP headers, or can be embedded in pages via meta
HTML object in DOM

• Modern standard defense against XSS attacks

http://good.com

Recap + next time…

134

• Web is windy, twisted, complicated, and hard to reason about

• Lots of growth in web comes from use cases, as those evolved, so too did
security

• Evergreen lesson: mixing code and data is bad

• Double evergreen lesson: Sanitize inputs, but don’t do it yourself (libraries
will help you here)

• You’ll implement all these attacks in PA3

• Next time we’ll talk about web measurement and how you’re tracked on the
web — two of my favorite topics!

