
CSE127, Computer Security
Catch up Systems Sec II

Intro to Web

Housekeeping
General course things to know

• PA2 due tonight!

• Godspeed

• PA3 released at midnight!

• Midterm is 2/12, during class hours, location TBD

• Class topics will go through web security (2/5) and include PA3 material

• One sheet of paper front and back is allowed as a “cheatsheet”

• No practice midterm, but will put up some sample questions so you get a
sense of the style

2

Meltdown, again

3

Recall from last time…

4

• Microarchitecture makes all kinds of optimizations that aren’t in the
architecture spec

• Pipelining

• CPU processes instructions in a pipeline; so many instructions can use
the CPU resources at the same time

• Out-of-order execution

• CPU will opportunistically execute instructions that it thinks it can do
because there’s no reliance on previous instructions

Out of Order Side Effects

5

if (x < array.length()) {

 value = array[x];

}

CPU Thought Process

Out of Order Side Effects

6

if (x < array.length()) {

 value = array[x];

}

This conditional is going to take
a long time…

CPU Thought Process

Out of Order Side Effects

7

if (x < array.length()) {

 value = array[x];

}

This conditional is going to take
a long time…

Might as well execute something
else; basically, store array[x] in a
register

CPU Thought Process

Out of Order Side Effects

8

if (x < array.length()) {

 value = array[x];

}

This conditional is going to take
a long time…

Might as well execute something
else; basically, store array[x] in a
register

If x ends up longer than array
length, i’ll clear the register

CPU Thought Process

Out of Order Side Effects

9

if (x < array.length()) {

 value = array[x];

}

This conditional is going to take
a long time…

Might as well execute something
else; basically, store array[x] in a
register

If x ends up longer than array
length, i’ll clear the register

CPU Thought Process

If x is less than array length,
i’m a genius

Out of Order Side Effects

10

if (x < array.length()) {

 value = array[x];

}

• Value is still loaded into the cache
regardless of if the processor needs to
rollback changes.

• Why?

L1 cache

value

Out of Order Side Effects

11

if (x < array.length()) {

 value = array[x];

}

• Value is still loaded into the cache
regardless of if the processor needs to
rollback changes.

• Why?

• Processor can’t process another address
(it takes too long); all it needs to know is
“clear %eax”

L1 cache

value

Does meltdown work even when I’m doing bad stuff?

12

• Following code dereferences a null ptr (bad) and then assigns something to
an array

*(char *) 0;

array[0] = 0;

Does meltdown work even when I’m doing bad stuff?

13

• Following code dereferences a null ptr (bad) and then assigns something to
an array

• Because of MMU privilege check, the first line will segfault the program, but…

*(char *) 0;

array[0] = 0;

Does meltdown work even when I’m doing bad stuff?

14

• Following code dereferences a null ptr (bad) and then assigns something to an
array

• Because of MMU privilege check, the first line will segfault the program, but…

• A cache timing side channel attack reveals that the array page is still cached!

*(char *) 0;

array[0] = 0;

Out of order execution is the building block of Meltdown

15

• Out of order instructions that have microarchitectural side effects are called
transient instructions

• These are the building blocks of our attack

• The previous example shows us that we run out-of-order instructions even
when the previous instructions might crash a program

• Key insight of Meltdown: Can we use side channels + this architectural “race
condition” to extract protected memory?

Meltdown Playbook

16

Meltdown Playbook

17

1. Identify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

Meltdown Playbook

18

1. Identify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

2. Create a transient instruction that can load that privileged value in the cache

Meltdown Playbook

19

1. Identify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

2. Create a transient instruction that can load that privileged value in the cache

3. Use the privileged value in some operation (usually in Meltdown, it’s to index
an array)

Meltdown Playbook

20

1. Identify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

2. Create a transient instruction that can load that privileged value in the cache

3. Use the privileged value in some operation (usually in Meltdown, it’s to index
an array)

4. Check to see if the thing you used was cached (e.g., check to see if your array
index was cached using a timing side channel attack); if it was, then you know
the value of the privileged information

Meltdown Playbook

21

1. Identify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

2. Create a transient instruction that can load that privileged value in the cache

3. Use the privileged value in some operation (usually in Meltdown, it’s to index
an array)

4. Check to see if the thing you used was cached (e.g., check to see if your array
index was cached using a timing side channel attack); if it was, then you know
the value of the privileged information

5. Repeat

Meltdown Playbook example

22

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

1. Goal: Read one byte of kernel memory
at the location 0xffff00e0

Meltdown Playbook example

23

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

• Goal: Read one byte of kernel memory
at the location 0xffff00e0

• Transient instruction loads this
memory value into the cache

• Remember, privilege check will be
delayed

Meltdown Playbook example

24

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

• Goal: Read one byte of kernel memory
at the location 0xffff00e0

• Transient instruction loads this
memory value into the cache

• Remember, privilege check will be
delayed

• Use the data in some operation, in this
case, indexing an array.

Meltdown Playbook example

25

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

• Goal: Read one byte of kernel memory
at the location 0xffff00e0

• Transient instruction loads this
memory value into the cache

• Remember, privilege check will be
delayed

• Use the data in some operation, in this
case, indexing an array

• Run a timing side channel to check if
array[data] is in the cache (flush + reload)

Meltdown Playbook example

26

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

• Goal: Read one byte of kernel memory
at the location 0xffff00e0

• Transient instruction loads this
memory value into the cache

• Remember, privilege check will be
delayed

• Use the data in some operation, in this
case, indexing an array

• Run a timing side channel to check if
array[data] is in the cache (flush + reload)

Meltdown Playbook example

27

char data = *(char*)0xffff00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

• Goal: Read one byte of kernel memory
at the location 0xffff00e0

• Transient instruction loads this
memory value into the cache

• Remember, privilege check will be
delayed

• Use the data in some operation, in this
case, indexing an array

• Run a timing side channel to check if
array[data] is in the cache (flush + reload)

If array[data] is in the cache, then
you learn the value of data even
though you never “read” it directly!

Meltdown Bug

28

• Using out-of-order execution, attacker can read any
data at any address

• Privilege checks for the kernel are sometimes too
slow to stop this

• Kernel memory is leaked

• Entire physical memory is typically also accessible
in kernel space… meaning you can potentially leak
other processes private memory as well

What do we do about Meltdown?

29

• Immediate software only fix: stop mapping kernel memory pages in user
processes altogether

• But this would make programs so slow…

• Instead, we do something called Kernel Page Table Isolation

• Key idea: Map kernel memory in userspace still, but page everything out
unless you’re running in kernel mode

• 5% — 30% slowdown for most workloads

• Newer processors have a microarchitectural fix where the privilege check
happens fast, but many are still vulnerable

Spectre

30

Processors being Processors: Speculative Execution

31

• Sometimes control flow depends on output of an earlier instruction

• E.g., conditional branch, function pointer

• Rather than wait to know for sure which way to go, the processor may
speculate about the direction/target of a branch

• Guess based on the past

• If guess is correct, performance is improved

• If guess is wrong, speculated computation is discarded and everythign is re-
computed using the correct value

Branch Prediction

32

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

Branch Prediction

33

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (i = 0; i < 500; i++){

 array[i] = ‘h’

}

array2[0] = 0;

Branch Prediction

34

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

• Branch predictor would be pretty damn sure array[i] is going to be used;
speculatively execute that line instead of the next one

for (i = 0; i < 500; i++){

 array[i] = ‘h’

}

array2[0] = 0;

Spectre — it gets worse

35

• Combines cache side channels + branch prediction for arbitrary memory
reading

• Can break the process invariant — e.g., malicious processes can trick the CPU
into loading other process memory into the cache, and leaks that memory
voluntarily

Spectre attacks (simplified)

36

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

37

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

38

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

39

• Goal: Train branch predictor to leak memory values

index = 1;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

40

• Goal: Train branch predictor to leak memory values

index = 1;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

41

• Goal: Train branch predictor to leak memory values

index = 2;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

42

• Goal: Train branch predictor to leak memory values

index = 2;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

43

• Goal: Train branch predictor to leak memory values

index = 3;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

44

• Goal: Train branch predictor to leak memory values

index = 3;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

45

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

46

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

Spectre attacks (simplified)

47

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

You can extract just like you
would in Meltdown!

Spectre attacks (simplified)

48

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

game over gg

You can extract just like you
would in Meltdown!

What do we do about Spectre?

49

• Ideas?

What do we do about Spectre?

50

• Ideas?

• Admittedly very rough; but good news is it’s hard to exploit

• Broad issue about speculation and branch prediction

• Could disable speculation on branches… but htere’s a huge performance
impact as a result

• Also can only be done by chip manufacturer

• Selectively insert instructions to stop speculation at sensitive branches

• LFENCE

• All of these are bandaids, not solutions

Sea-change shift in last 8 years

51

• Computer architects spent the last 20 years optimizing for common use case

• Assumption was that if optimization doesn’t change output then we’re all
good

• Sadly, every optimization is now under intense, immense scrutiny

• New microarchitectual side-channel papers are published almost every
conference…

• Hardware vendors and computer architects are retooling to figure out how to
still offer optimizations without huge security hit

• ¯_(ツ)_/¯ it’s an ongoing field

My 2c on side channel attacks

52

• Side channels are epicly cool and fun

• They entertain the part of your brain that likes puzzles

• Are they the most important harm / security threat facing people today?

• No. They’re niche, hard to execute, and often probabilistic in practice

• But they’re worth studying… even if to teach us all the ways in which our
assumptions might be flawed :)

The Web

53

Where we’ve been and where we’re going

54

• So far, we’ve been talking low level, asking questions about C programs,
buffers, operating systems, and processors…

• A lot of cybersecurity action still remains here, the most traditional “exploits”
of computer systems live here

• Now, we’re shifting our focus to higher level systems and those security
challenges

• The web

• Networks

• Cryptography (and TLS which protects us all)

• People

Learning objectives

55

• Understand (basically) how Web browsing works and the fundamental
architecture that underpins the Web

• Discuss cookies, tracking, and how state is applied on the web

• Discuss JavaScript and the mechanisms that allow websites to operate as
programs

Learning objectives

56

• Understand (basically) how Web browsing works and the fundamental
architecture that underpins the Web

• Understand the basic Web security model (same origin policy)

• Learn what a cookie is and the ways in which cookies can get attacked

Polling the room

57

• How many people have built a website before?

• How many people have built a web app before?

• How many people have deployed a web app before?

• Where?

What is the web?

58

What is the web?

59

Information system that runs on the Internet that allows documents to be connected
to other documents, increasingly enabled through scripting and server-side logic

Web Fundamentals

60

• Take three minutes to answer these
questions with folks around you.

• What is a web server? Examples?

• What is a web client? Examples?

• What is HTTP?

Web Fundamentals

61

• Take three minutes to answer these
questions with folks around you.

• What is a web server? Examples?

• What is a web client? Examples?

• What is HTTP?

Interfacing with the Web
Client / Server Model

Client Web Server

Interfacing with the Web
Client / Server Model

Client Web Server

Request

Interfacing with the Web
Client / Server Model

Client Web Server

Request

Response

Other stuff, like login cookies

Interfacing with the Web
Client / Server Model

Client Web Server

Request

Response

Other stuff, like login cookies

Clients can be all kinds of things!

– Web browsers
– Phone Apps
– Desktop Apps

Modern web architecture

66

• Web client (typically a browser) issues requests

• Web server responds

• Web client will handle the response for the user

Web clients

67

• How do web browsers make requests to web servers?

Web clients

68

• How do web browsers make requests to web servers?

• User types in a URL into the browser bar

• User re-loads a page

• User clicks on a link

• Web server responds with a redirect (aka, browser should request a new
page)

• Web page could embed another page (independent of user interaction)

• Script within a webpage can issue a request

Web servers

69

• What are the ways in which web servers can respond to client requests?

Web servers

70

• What are the ways in which web servers can respond to client requests?

• Return a document (HTML) for the page

• Return any other resource (e.g., images, scripts, CSS, etc.)

• Run some custom logic or code and return outputs (e.g., APIs)

• Talk to some external system and return output (e.g., database)

• Do nothing and waste your time

Web client response handling

71

• What are some ways that web clients handle server responses?

Web client response handling

72

• What are some ways that web clients handle server responses?

• Render HTML + CSS

• Execute embedded JavaScript

• Invoke some external plugin (e.g., PDF reader)

Web Fundamentals

73

• Take three minutes to answer these
questions with folks around you.

• What is a web server? Examples?

• What is a web client? Examples?

• What is HTTP?

Hypertext Transfer Protocol (HTTP)

74

• HTTP — a protocol invented in 1989 that still power the web today

• Basic concept is to allow fetching of resources (e.g., HTML documents,
nowadays, basically anything)

• How do we identify where a resource is on the web?

Hypertext Transfer Protocol (HTTP)

75

• HTTP — a protocol invented in 1989 that still power the web today

• Basic concept is to allow fetching of resources (e.g., HTML documents,
nowadays, basically anything)

• How do we identify where a resource is on the web?

• We use what’s called a Uniform Resource Locator (URL)

URLs demystified

76

• All resources on the web have a URL, which is broken into several parts:

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

77

• All resources on the web have a URL, which is broken into several parts:

• Scheme: Tells you what protocol you’re using to communicate. On web,
typically HTTP or HTTPS.

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

78

• All resources on the web have a URL, which is broken into several parts:

• Domain: The human-readable name that describes the server you’re trying
to talk to. kumarde.com and www.kumarde.com are different domains.

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

http://kumarde.com
http://www.kumarde.com
https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

79

• All resources on the web have a URL, which is broken into several parts:

• Port: The network port to communicate with the server. HTTP default runs
on 80, HTTPS on 443. Lots of default ports (22 for SSH, 23 for Telnet, etc.)

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

80

• All resources on the web have a URL, which is broken into several parts:

• Path: The full “file path” to the resource you’re looking for. Mirrors file path
structure on most servers. APIs leverage paths to designate resources.

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

81

• All resources on the web have a URL, which is broken into several parts:

• Query string: Typically includes parameters delimited by “&” that contain
useful information, e.g., language, etc.

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

HTTP is request-response

82

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

HTTP is request-response

83

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

Initial request for HTML

HTTP is request-response

84

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

Initial request for HTML

Response

HTTP is request-response

85

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

Request for JavaScript

HTTP is request-response

86

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

Request for JavaScript

Response

HTTP is request-response

87

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

JS requests an image

HTTP is request-response

88

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

JS requests an image

Response

HTTP is request-response

89

• Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Client Web Server

JS requests an image

Response

HTTP Request Anatomy

90

• What does an HTTP Request look like?

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request Anatomy

91

• What does an HTTP Request look like?

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Method Path Protocol Version

HTTP Request Anatomy

92

• What does an HTTP Request look like?

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Headers

HTTP Request Anatomy

93

• What does an HTTP Request look like?

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Body (usually empty for requests)

Aside: HTTP Versions

94

• Today’s servers generally support a mix of HTTP 1.1, 2, and 3

• Differences are mainly about efficiency; solving head-of-line blocking
problems, relying on different transport protocols, etc.

• Modern browsers can speak everything

• HTTP/2 used by 34.1% of all websites (per w3techs)… actually declining over
time

• Pipelining requests for multiple objects, header compression, server push

• HTTP/3 used by 37% of all websites (per w3techs)

• Uses QUIC instead of TCP

HTTP Response Anatomy

95

• What does an HTTP Response look like?

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

HTTP Response Anatomy

96

• What does an HTTP Response look like?

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

Status Code

HTTP Response Anatomy

97

• What does an HTTP Response look like?

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

Status Code

HTTP Headers

HTTP Response Anatomy

98

• What does an HTTP Response look like?

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

Status Code

HTTP Headers

<html> Hello there! </html>

HTTP Basics

99

• Client sends HTTP requests, each come with a method

• GET: retrieve a resource

• POST: update a resource (submit a form, publish a post, etc.)

• Anyone have a guess as to what HEAD does?

• There are a few others (PUT, PATCH, DELETE); older browsers don’t use them

• Servers send HTTP responses, each come with a status code

• 200: OK

• 302: Found (redirect)

• 404: Not found

HTTP Basics

100

• Websites have lots of resources: you should “Inspect Element” in your
browser to see them

Web sessions

101

• HTTP is a stateless protocol. What does this mean?

• Requests are processed independently; no notion of a session by default

• But…. most web applications are session-based, so how?

Web sessions

102

• HTTP is a stateless protocol. What does this mean?

• Requests are processed independently; no notion of a session by default

• But…. most web applications are session-based, so how?

• Cookies!

Web sessions

103

• HTTP is a stateless protocol. What does this mean?

• Requests are processed independently; no notion of a session by default

• But…. most web applications are session-based, so how?

• Cookies!

• Cookies are used for lots of things, good and bad, including

• Sessions (e.g., login, shopping carts)

• Personalization (e.g., user preferences, themes, etc.)

• Tracking (e.g., online advertising)

How do web cookies work?

104

• The web server sets cookies in a response to the web browser (using an HTTP
header)

• Set-Cookie: <cookie-name>=<cookie-value>;

• Also defines “properties” for each cookie

• e.g., when they expire, what domains they’re for, what protocols to use
with, etc.

• Browser automatically attaches cookies to every subsequent request to that
web server

• Unless you disable them, but… you’ll be annoyed

Web Cookie Typology

105

• Session cookies

• Expiration property is not set

• Exist only during current browser session

• Deleted when your browser is shut down

• Examples?

• Persistent cookies

• Saved until server-defined expiration time

• Examples?

Server sets cookies in headers

106

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: trackingID=253407892435087
Content-Length: 2543

Client sends cookies every request

107

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Cookie: trackingID=253407892435087
Referer: http://www.google.com?q=dingbats

http://www.example.com

Browser Execution Model

108

• Each browser window / tab…

• Loads and renders content

• Parses HTML and runs JavaScript

• Fetches subresources (e.g., images,
CSS, JavaScript)

• Responds to events like onClick,
onMouseover, onLoad, onTimeout

https://www.chromium.org/developers/design-documents/multi-process-architecture/

Nested Execution Model

109

• Websites may contain frames from other
sources

• Frame: rigid, visible division

• iFrame: floating, inline frame

• Why use frames?

• Delegate screen area to content from
another source (e.g., ads)

• Browser provides isolation based on
frame (remember site isolation?); each
frame gets its own rendering process

https://www.chromium.org/developers/design-documents/oop-iframes/

What is the layout of webpages?

110

• Webpages follow a Document Object Model (DOM) — this is the structure of
the page itself (encoded via HTML, sometimes XML)

• The page itself is a tree of nodes designated by tags (e.g., <div></div>)

Can I modify the layout on the fly?

111

Can I modify the layout on the fly?

112

• Yes!

• The DOM can be manipulated via code or scripts included on the page

• AKA: everything you see can be rendered dynamically

• Even the browser can be manipulated via code

• Code can change your window, move you back and forward through
browsing history, read cookies… anything

In that sense, websites are just programs

113

• Partially executed on the client side

• HTML rendering, JavaScript, extensions, etc.

• Partially executed on the server side

• Python, CGI, PHP, ASP, server-side JavaScript (ew), etc.

• And programs, as we know, can have lots of probelms

Next time…

114

• We get into the web security model

• Same-Origin Policy

• We get into web attacks (SQL injection, XSS, CSRF)!

• You’ll implement a bunch of these in PA3

