CSE127, Computer Security

Catch up Systems Sec I
Intro to Web

UCSan Diego

Housekeeping

General course things to know

® PA2 due tonight!
® Godspeed

® PA3 released at midnight!

® Midterm is 2/12, during class hours, location TBD
® Class topics will go through web security (2/5) and include PA3 material
® One sheet of paper front and back is allowed as a “cheatsheet”

® No practice midterm, but will put up some sample questions so you get a
sense of the style

Meltdown, again

Recall from last time...

® Microarchitecture makes all kinds of optimizations that aren’t in the
architecture spec

® Pipelining

® CPU processes instructions in a pipeline; so many instructions can use
the CPU resources at the same time

e QOut-of-order execution

® CPU will opportunistically execute instructions that it thinks it can do
because there's no reliance on previous instructions

Out of Order Side Effects

CPU Thought Process
i1f (x < array.length()) {

value = array([x];

Out of Order Side Effects

CPU Thought Process

if (x < array.length()) ({ This conditional is going to take

a long time...
value = array([x]; J

Out of Order Side Effects

CPU Thought Process

1f (x < array.length()) { This conditional is going to take
value = array[x]; a long time...
} Might as well execute something

else; basically, store array[x] in a
register

Out of Order Side Effects

CPU Thought Process

if (x < array.length()) ({ This conditional is going to take
a long time...

value = array([x];

Might as well execute something
else; basically, store array[x] in a
register

f x ends up longer than array
length, i’ll clear the register

Out of Order Side Effects

CPU Thought Process

if (x < array.length()) ({ This conditional is going to take
a long time...

value = array([x];

Might as well execute something
else; basically, store array[x] in a
register

f x ends up longer than array
length, i’ll clear the register

't x is less than array length,
I'm a genius

10

Out of Order Side Effects

® \alue is still loaded into the cache

i1f (x < array.length()) {

value = array([x];

value

L1 cache

regardless of if the processor needs to
rollback changes.

o \Why?

11

Out of Order Side Effects

® \alue is still loaded into the cache

i1f (x < array.length()) {

value = array([x];

regardless of if the processor needs to
rollback changes.

o \Why?

® Processor can't process another address

value

L1 cache

(it takes too long); all it needs to know is
"clear %eax”

12

Does meltdown work even when I'm doing bad stuff?

® Following code dereterences a null ptr (bad) and then assigns something to

an array
* (char *) O;

array[0] = O;

13

Does meltdown work even when I'm doing bad stuff?

® Following code dereterences a null ptr (bad) and then assigns something to

an array
* (char *) O;

array[0] = O;

® Because of MMU privilege check, the first line will segfault the program, but...

Does meltdown work even when I'm doing bad stuff?

® Following code dereferences a null ptr (bad) and then assigns something to an

array
* (char *) O;

array[0] = O;

® Because of MMU privilege check, the first line will segfault the program, but...

& O
o O
o O

>

[cycles]

V
S
P
)
(7))
Q
O
QO
<

W
-
-

200

14 ® A cache timing side channel attack reveals that the array page is still cached!

15

Out of order execution is the building block of Meltdown

® Out of order instructions that have microarchitectural side effects are called
transient instructions

® These are the building blocks of our attack

® The previous example shows us that we run out-of-order instructions even
when the previous instructions might crash a program

e Key insight of Meltdown: Can we use side channels + this architectural “race
condition” to extract protected memory?

Meltdown Playbook

17

Meltdown Playbook

1.

|dentify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

18

Meltdown Playbook

1. Identity an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

2. Create a transient instruction that can load that privileged value in the cache

19

Meltdown Playbook

1.

|dentify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

Create a transient instruction that can load that privileged value in the cache

Use the privileged value in some operation (usually in Meltdown, it's to index
an array)

20

Meltdown Playbook

1.

|dentify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

. Create a transient instruction that can load that privileged value in the cache

Use the privileged value in some operation (usually in Meltdown, it's to index
an array)

Check to see if the thing you used was cached (e.qg., check to see if your array
index was cached using a timing side channel attack); if it was, then you know
the value of the privileged information

21

Meltdown Playbook

1.

|dentify an address that stores some privileged value you care about (e.g.,
kernel address that stores a buffer for passwords)

. Create a transient instruction that can load that privileged value in the cache

Use the privileged value in some operation (usually in Meltdown, it's to index
an array)

Check to see if the thing you used was cached (e.qg., check to see if your array
index was cached using a timing side channel attack); if it was, then you know
the value of the privileged information

. Repeat

22

Meltdown Playbook example

1.

Goal: Read one byte of kernel memory

at the location O0xf

—

~00e0

char data = *(char*)0xff££f00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

Meltdown Playbook example

® Goal: Read one byte of kernel memory

—

at the location Oxffff00e0

® Transient instruction loads this char data = * (char*)O0xfff£00e0

memory value into the cache

array[data] = 0;
® Remember, privilege check will be

delayed

23 Example adapted from Security & Privacy Academy

Meltdown Playbook example

® Goal: Read one byte of kernel memory
at the location Oxf£££00e0

® Transient instruction loads this char data = * (char*)Oxfff£00e0
memory value into the cache

array[data] = 0;
® Remember, privilege check will be

delayed

® Use the data in some operation, in this
case, indexing an array.

24 Example adapted from Security & Privacy Academy

25

Meltdown Playbook example

® (Goal: Read one byte of kernel memory
at the location 0xf£££00e0

® Transient instruction loads this
memory value into the cache

® Remember, privilege check will be
delayed

® Use the data in some operation, in this
case, indexing an array

® Run a timing side channel to check if
array[data] is in the cache (tlush + reload)

char data = *(char*)0xff££f00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

26

Meltdown Playbook example

® (Goal: Read one byte of kernel memory
at the location 0xf£££00e0

® Transient instruction loads this
memory value into the cache

® Remember, privilege check will be
delayed

® Use the data in some operation, in this
case, indexing an array

® Run a timing side channel to check if
array[data] is in the cache (tlush + reload)

char data = *(char*)0xff££f00e0

array[data] = 0;

Example adapted from Security & Privacy Academy

27

Meltdown Playbook example

® (Goal: Read one byte of kernel memory
at the location 0xf£££00e0

® Transient instruction loads this
memory value into the cache

® Remember, privilege check will be
delayed

® Use the data in some operation, in this
case, indexing an array

® Run a timing side channel to check if
array[data] is in the cache (tlush + reload)

char data = *(char*)0xff££f00e0

array[data] = 0;

If array[data] is in the cache, then
you learn the value of data even
though you never “read” it directly!

Example adapted from Security & Privacy Academy

28

Meltdown Bug

® Using out-of-order execution, attacker can read any
data at any address

® Privilege checks for the kernel are sometimes too
slow to stop this

® Kernel memory is leaked

® Entire physical memory is typically also accessible
in kernel space... meaning you can potentially leak
other processes private memory as well

29

What do we do about Meltdown?

® |mmediate software only fix: stop mapping kernel memory pages in user
processes altogether

® But this would make programs so slow...
® |nstead, we do something called Kernel Page Table Isolation

e Key idea: Map kernel memory in userspace still, but page everything out
unless you're running in kernel mode

® 5% — 30% slowdown for most workloads

® Newer processors have a microarchitectural fix where the privilege check
happens fast, but many are still vulnerable

31

Processors being Processors: Speculative Execution

® Sometimes control flow depends on output of an earlier instruction
® £ g., conditional branch, function pointer

® Rather than wait to know for sure which way to go, the processor may
speculate about the direction/target of a branch

® Guess based on the past
® |f guess is correct, performance is improved

® |f guess is wrong, speculated computation is discarded and everythign is re-
computed using the correct value

32

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

33

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (1 = 0; 1 < 500; 1i++){
array[i] = ‘h’

}
array2[0] = O0;

34

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (1 = 0; 1 < 500; 1i++){
array[i] = ‘h’

}
array2[0] = O0;

® Branch predictor would be pretty damn sure array[i] is going to be used;
speculatively execute that line instead of the next one

35

Spectre — it gets worse

® Combines cache side channels + branch prediction for arbitrary memory
reading

® Can break the process invariant — e.g., malicious processes can trick the CPU
into loading other process memory into the cache, and leaks that memory
voluntarily

36

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

1f (index < 4)

|

predictor

arr[data[index] * 4096]

37

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

if (index < 4)

|

oredictor

arr[data[index] * 4096]

38

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

39

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 1;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

40

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 1;
char* data = “textKEY";

if (index < 4)

N

oredictor

arr[data[index] * 4096]

41

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 2;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

42

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 2;
char* data = “textKEY";

if (index < 4)

N

oredictor

arr[data[index] * 4096]

43

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 3;
char* data = “textKEY";

1f (index < 4)

T~

predictor

arr[data[index] * 4096]

44

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 3;
char* data = “textKEY";

if (index < 4)

T~

oredictor

arr[data[index] * 4096]

45

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 4;
char* data = “textKEY";

1f (index < 4)

T~

predictor

arr[data[index] * 4096]

46

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

T~

oredictor

arr[data[index] * 4096]

Branch prediction will
erroneously place "K"
in the cache...

47

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

T~

oredictor

arr[data[index] * 4096]

Branch prediction will
erroneously place "K"
in the cache...

You can extract just like you
would in Meltdown!

48

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

T~

oredictor

arr[data[index] * 4096]

Branch prediction will
erroneously place "K"
in the cache...

You can extract just like you
would in Meltdown!

game over gg

49

What do we do about Spectre?

® |deas”?

What do we do about Spectre?

® |deas?

® Admittedly very rough; but good news is it's hard to exploit
® Broad issue about speculation and branch prediction

® Could disable speculation on branches... but htere's a huge performance
impact as a result

® Also can only be done by chip manutacturer
® Selectively insert instructions to stop speculation at sensitive branches

o | FENCE

so ® All of these are bandaids, not solutions

S

Sea-change shift in last 8 years

® Computer architects spent the last 20 years optimizing for common use case

® Assumption was that if optimization doesn’t change output then we're all
good

® Sadly, every optimization is now under intense, immense scrutiny

® New microarchitectual side-channel papers are published almost every
conference...

® Hardware vendors and computer architects are retooling to figure out how to
still offer optimizations without huge security hit

e \ (YV)_/ it's an ongoing field

52

My 2c on side channel attacks

® Side channels are epicly cool and fun
® They entertain the part of your brain that likes puzzles

® Are they the most important harm / security threat facing people today?
® No. They're niche, hard to execute, and often probabilistic in practice

® But they're worth studying... even if to teach us all the ways in which our
assumptions might be flawed :)

54

Where we've been and where we're going

® So far, we've been talking low level, asking questions about C programs,
bufters, operating systems, and processors...

® A lot of cybersecurity action still remains here, the most traditional “exploits”
of computer systems live here

® Now, we're shifting our focus to higher level systems and those security
challenges

® The web
® Networks
® Cryptography (and TLS which protects us all)

® People

55

Learning objectives

® Understand (basically) how Web browsing works and the fundamental
architecture that underpins the Web

® Discuss cookies, tracking, and how state is applied on the web

® Discuss JavaScript and the mechanisms that allow websites to operate as
programs

56

Learning objectives

® Understand (basically) how Web browsing works and the fundamental
architecture that underpins the Web

® Understand the basic Web security model (same origin policy)

® | earn what a cookie is and the ways in which cookies can get attacked

S7

Polling the room

® How many people have built a website before?
® How many people have built a web app before?

® How many people have deployed a web app before?

® \Where?

58

What is the web?

59

What is the web?

Information system that runs on the Internet that allows documents to be connected
to other documents, increasingly enabled through scripting and server-side logic

Web Fundamentals

® Take three minutes to answer these
questions with folks around you.

® \What is a web server? Examples?

® \What is a web client? Examples?

® \Whatis HTTP?

60

61

Web Fundamentals

® Take three minutes to answer these
questions with folks around you.

® What is a web server? Examples?

® What is a web client? Examples?

® \Whatis HTTP?

Interfacing with the Web
Client / Server Model

(=)

Client Web Server

o~
J

Interfacing with the Web
Client / Server Model

Request

[—]
C ——=n
e —]
(=) ——]

Client Web Server

Interfacing with the Web
Client / Server Model

Request

:'
Response
-———-m - -

E Other stuff, like login cookies
4—

Client Web Server

Interfacing with the Wek
Client / Server Model

Clients can be all kinds of things!

ne — Web browsers

— Phone Apps
— Desktop Apps

Res

Other stuff, |

66

Modern web architecture

® \Web client (typically a browser) issues requests

® \Web server responds

® \Web client will handle the response tor the user

6/

Web clients

® How do web browsers make requests to web servers?

638

Web clients

® How do web browsers make requests to web servers?

® User types in a URL into the browser bar
® User re-loads a page
® User clicks on a link

® \\eb server responds with a redirect (aka, browser should request a new
page)

® \Web page could embed another page (independent of user interaction)

® Script within a webpage can issue a request

69

Web servers

® \What are the ways in which web servers can respond to client requests?

Web servers

® \What are the ways in which web servers can respond to client requests?

® Return a document (HTML) for the page

® Return any other resource (e.g., images, scripts, CSS, etc.)

® Run some custom logic or code and return outputs (e.g., APIs)
® Talk to some external system and return output (e.g., database)

® Do nothing and waste your time

/1

Web client response handling

® \What are some ways that web clients handle server responses?

/2

Web client response handling

® \What are some ways that web clients handle server responses?

® Render HTML + CSS

® Fxecute embedded JavaScript

® [nvoke some external plugin (e.g., PDF reader)

Web Fundamentals

® Take three minutes to answer these
questions with folks around you.

® \What is a web server? Examples?

® \What is a web client? Examples?

® Whatis HTTP?

73

74

Hypertext Transfer Protocol (HTTP)

® HTTP — a protocol invented in 1989 that still power the web today

® Basic concept is to allow tfetching of resources (e.g., HTML documents,
nowadays, basically anything)

® How do we identity where a resource is on the web?

Hypertext Transfer Protocol (HTTP)

® HTTP — a protocol invented in 1989 that still power the web today

® Basic concept is to allow tfetching of resources (e.g., HTML documents,
nowadays, basically anything)

® How do we identify where a resource is on the web?

® \Ve use what's called a Unitorm Resource Locator (URL)

< C 25 cseweb.ucsd.edu/classes/wi26/cse127-a/

Computer Security

UCSD CSE 127, Winter 2026

This course focuses on computer and network security, covering a wide range of topics on both the
"defensive" and "offensive" side of the field. Among these will be application security and
exploitation (buffer overflows, race conditions, SQL injection, etc), access control and authentication,
covert channels, web and website security, network protocol attacks, intrusion detection/prevention,
viruses/worms and bots, spyware and phishing, denial-of-service, privacy/anonymity, and computer
forensics. The goal of this course is to provide both an appreciation for how to think adversarially

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

https://www.kumarde.com:443/classes/wi26/csel27/lectures/web lec.pdf?lang=en

76

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

® Scheme: Tells you what protocol you're using to communicate. On web,
typically HTTP or HTTPS.

https:|//www.kumarde.com:443/classes/wi26/csel27/lectures/web lec.pdf?lang=en

77

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

® Domain: The human-readable name that describes the server you're trying
to talk to. kumarde.com and www.kumarde.com are different domains.

https: / 443/classes/wiZ26/csel27/lectures/web lec.pdf?lang=en

/8

http://kumarde.com
http://www.kumarde.com
https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

® Port: The network port to communicate with the server. HTTP default runs
on 80, HTTPS on 443. Lots ot default ports (22 for SSH, 23 for Telnet, etc.)

https://www.kumarde.comf443)/classes/wi26/csel27/lectures/web lec.pdf?lang=en

/9

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

® Path: The full “file path” to the resource you're looking for. Mirrors file path
structure on most servers. APls leverage paths to designate resources.

https://www.kumarde.com:443|/classes/wi26/csel27/lectures/web lec.pdfpPlang=en

80

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

URLs demystified

® All resources on the web have a URL, which is broken into several parts:

® Query string: Typically includes parameters delimited by “&" that contain
useful information, e.qg., language, etc.

https://www.kumarde.com:443/classes/wi26/csel27/lectures/web lec .pd

81

https://www.kumarde.com:443/classes/wi26/cse127/lectures/web_lec.pdf?lang=en

82

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

(=)

Client

—]
———

€ -]
~J

———-—

Web Server

83

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Initial request for HTML E
e —————————————————————————————————

€ -]
J

(=) ———

Client Web Server

34

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Initial request for HTML E
———

Response i
L —]

(=) ———

Client Web Server

85

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Request for JavaScript E

€ -]
J

(=) ———

Client Web Server

HTML

86

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

Request for JavaScript E
Response [—]

€ -]
J

(=) ———

Client Web Server

87

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

JS requests an image E

€ -]
J

(=) ———

Client Web Server

HTML

88

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning
clients and servers exchange individual messages (as opposed to a stream of
data)

JS requests an image

Response

Client Web Server

89

HTTP i1s request-response

® Unlike other network protocols, HTTP is strictly request-response; meaning

clients and servers exchange individual messages (as opposed to a stream of
data)

JS requests an image E
Response ———

€ -]
J

———-—

Client Web Server

90

HITP Request Anatomy

® \What does an HTTP Request look like?

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeqg,

Accept—-Language: en
Connection: Keep-Alive

User—-Agent: Mozilla/1l.22 (compatible; MS

Host: www.example.com
Referer: http://www.google.com?g=dingbats

2.

0;

/

Windows 95)

91

HITP Request Anatomy

® \What does an HTTP Request look like?

Method Path Protocol Version
GET /index.html HTTP/1.1

F—

Accept: image/gif, image/x-bitmap, image/jpeqg,

Accept—-Language: en
Connection: Keep-Alive

User—-Agent: Mozilla/1l.22 (compatible; MS

Host: www.example.com
Referer: http://www.google.com?g=dingbats

2.

0;

/

Windows 95)

HITP Request Anatomy

® \What does an HTTP Request look like?

GET /index.html HTTP/1.1

—

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept—-Language: en

Connection: Keep-Alive HTTP Headers
User-Agent: Mozilla/1l.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

93

HITP Request Anatomy

® \What does an HTTP Request look like?

GET /index.html HTTP/1.1

F—

Accept: image/gif, image/x-bitmap, image/jpeqg,

Accept—-Language: en
Connection: Keep-Alive

User-Agent: Mozilla/1l.22 (compatible; MS

Host: www.example.com
Referer: http://www.google.com?g=dingbats

Body (usually empty for requests)

2.

0;

/

Windows 95)

94

Aside: HTTP Versions

® Today's servers generally support a mix of HTTP 1.1, 2, and 3

® Differences are mainly about efficiency; solving head-of-line blocking
problems, relying on different transport protocols, etc.

® Modern browsers can speak everything

® HTTP/2 used by 34.1% of all websites (per w3techs)... actually declining over
time

® Pipelining requests for multiple objects, header compression, server push
® HTTP/3 used by 37% of all websites (per w3techs)

® Uses QUIC instead of TCP

95

HI TP Response Anatomy

® \What does an HTTP Response look like?

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alilve

Content-Type: text/html

Last—-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...

Content-Length: 2543

96

HI TP Response Anatomy

® \What does an HTTP Response look like?

Status Code
HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alilve

Content-Type: text/html

Last—-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...

Content-Length: 2543

97

HI TP Response Anatomy

® \What does an HTTP Response look like?
Status Code

prre/1.0fp00 ok 0000000000000

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-—-a. e

p-aliv HTTP Headers

Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...

Content-Length: 2543

98

HI TP Response Anatomy

® \What does an HTTP Response look like?

Status Code
HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive
Content-Type: text/html HTTP Headers

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Set-Cookie: ...
Content-Length: 2543

<html|> Hello there! </html>

99

HTTP Basics

® Client sends HTTP requests, each come with a method

® GET: retrieve a resource

® POST: update a resource (submit a form, publish a post, etc.)

® Anyone have a guess as to what H.

=AD does?

here are a few others (PUT, PATCH, D

- L

T

E): older browsers don’t use them

® Servers send HTTP responses, each come with a status code

e 00: OK

® 302: Found (redirect)

e 404: Not found

HTTP Basics

® \Websites have lots of resources: you should “Inspect Element” in your
browser to see them

() [E] Deepak Kumar X + 4 Gemini

100

Deepak

Kumar il 7
Assistant Professor ‘ 3 3
University of California San Diego Z

kumarde@ucsd.edu
publications | cv | scholar

| study the security and digital safety threats that emerge when people
interact with sociotechnical systems at scale. These days, I've been calling
this subfield sociotechnical cybersecurity. | blend large-scale, data-driven
measurements with human-centered studies to understand how such
threats, which range from misinformation to online abuse, are
operationalized in practice and how people experience them. Ultimately, my
work contributes insights, data, defenses, and systems that seek to make the
Internet a safer place for all people.

If you've come looking for my creative work, go here.

Students

1 will be recruiting PhD students for Fall 2026. Please mark me in your application to
UCSD if you are excited about joining our lab.

| am always interested in working with motivated students on research. You can find
a page that details my interests and what you can expect from me as an advisor
here.

e Arshia Arya, PhD Student

e Haodi Zou, PhD Student

e Seoyoung Kweon, PhD Student (with Stefan Savage, Geoff Voelker)
e Paul Chung, PhD Student (with Stefan Savage, Geoff Voelker)

.
Teaching
e Winter 2026: CSE127 Computer Security (undergrad)
e Winter 2025: CSE227 Computer Security (grad)
e Fall 2024: CSE291 Sociotechnical Cybersecurity (grad)

Select Publications

Characterizing the MrDeepFakes Sexual Deepfake Marketplace

Catherine Han, Anne Li, Deepak Kumar, Zakir Durumeric. USENIX Security Symposium
(USENIX), August 2025. [pdf]

* - R O 2 =/ @k Finish update

‘< [0 Elements Console Sources Network > D& ¢ X

—

n @ Y Q Preserve log Disable cache | No throttling v | e
T 4

Invert | More filters v

All Fetch/XHR || Doc || CSS || JS || Font || Img || Media | | Manifest | | Socket || Wasm || Other
50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms

Name Status Type Initiator Size Time

=) kumarde.com 304 docum... 0.1kB 24 ms
) js?id=UA-77723744-1 307 script / ... | (index):5 0.0 kB 63 ms
7] index.css stylesh... | (index):15 0 ms
/) css?family=Lat0:600,400,300... stylesh... ' (index):16 0 ms
7] css?family=Montserrat&displ... stylesh... | (index):17 0 ms
) jquery.min.js y script (index):18 0 ms
) 2f9be15f0a.js script (index):19 0 ms
) jquery-3.4.1.slim.min.js script (index):20 0 ms
') popper.min.js script (index):21 0 ms
') bootstrap.min.js script (index):22 0 ms
ucsd-headshot.jpg jpeg (index):59 0ms

‘] bootstrap.min.css stylesh... | (index):14 4 ms
/) css?family=Fira+Sans:300,70... stylesh... index.css:1 0 ms
') google-analytics_analytics.js I script/.. js 13 ms
) google-analytics_analytics.js script google-analytics_ Tms
va9B4kDNxMZdWfMODSVNP... | - font css?family=Fira+£ 0ms
va9B4kDNxMZdWfMODSVNL... font css?family=Fira+$ 0 ms

7] free.min.css?token=2f9be15f... - fetch 2f9be15f0a.js:2 2ms
] free-v4-shims.min.css?token... : fetch 2f9be15f0a.js:2 2ms
] free-v4-font-face.min.css?to... - fetch 2f9be15f0a.js:2 2ms
)} content.js script import-content.js 1ms
)] actions-639cd34d.js script content.js:1 2ms
') helpers-10be1fb3.js script content.js:2 1ms
) globalStyles-22fbf6ab.js script content.js:3 2ms
@ favicon.ico vnd.mi... 129 ms

25 requests | 379 kB transferred | 2.5 MB resources | Finish: 367 ms | DOMContentLoaded

Console Al assistance What's new X O x

@ What's new in DevTools 143

See all new features

MCP server

Web sessions

® HTTP is a stateless protocol. What does this mean?

® Requests are processed independently; no notion of a session by default

® But.... most web applications are session-based, so how?

101

Web sessions

® HTTP is a stateless protocol. What does this mean?
® Requests are processed independently; no notion of a session by default

® But.... most web applications are session-based, so how?

® Cookies!

102

Web sessions

® HTTP is a stateless protocol. What does this mean?

® Requests are processed independently; no notion of a session by default

® But.... most web applications are session-based, so how?

® Cookies!

® Cookies are used for lots of things, good and bad, including
® Sessions (e.g., login, shopping carts)
® Personalization (e.g., user preferences, themes, etc.)

® Tracking (e.g., online advertising)
103

How do web cookies work?

® The web server sets cookies in a response to the web browser (using an HTTP

header)

e Set—-Cookie: <cookie—name>=<cookie-value>;
® Also defines “properties” for each cookie

® c.g., when they expire, what domains they're for, what protocols to use
with, etc.

® Browser automatically attaches cookies to every subsequent request to that
web server

® Unless you disable them, but... you'll be annoyea

104

Web Cookie Typology

® Session cookies
® Expiration property is not set
® Exist only during current browser session
® Deleted when your browser is shut down

® Fxamples?

® Persistent cookies

® Saved until server-detfined expiration time

® Fxamples?

105

Server sets cookies in headers

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: trackingID=253407892435087
Content-Leng:

106

Client sends cookies every request

GET /index.html HTTP/1.1

F—

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User—-Agent: Mozilla/1l.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

. 'D=253407892435087
Referer: http://www.google.com?g=dingbats

107

http://www.example.com

Browser Execution Model

Browser

RenderViewHost

® Fach browser window / tab...

RenderViewHost

® | oads and renders content

L'-r-l-\—-—*—------—---—, ravwiiddehit vt cr e rrrrr s rrrrrrc e c e rcc - -,

® Parses HTML and runs JavaScript

= IPC :
‘o

® Fetches subresources (e.g., images,

CSS, JavaScript)

\\lllllllllllllllllllllIlllllllllll

£

® Responds to events like onClick,
onMouseover, onLoad, onTimeout

108 https://www.chromium.org/developers/design-documents/multi-process-architecture/

Example Pages: A C

Nested Execution Model — 1 [F

® \Websites may contain frames from other — ——
sources o —
(A)83l o (¢ a0
® Frame: rigiq, visible division] et | | et |
(B |{Aiiciin. [c)iaiisiio. (D |{atieiic
® iFrame: floating, inline frame Ao 18 15
® \Why use frames? : B
® Delegate screen area to content from
another source (e.g., ads)
® Browser provides isolation based on '
frame (remember site isolation?); each

frame gets its own rendering process

109 https://www.chromium.org/developers/design-documents/oop-iframes/

What is the layout of webpages?

® \Webpages follow a Document Object Model (DOM) — this is the structure of
the page itself (encoded via HTML, sometimes XML)

® The page itselt is a tree of nodes designated by tags (e.g., <div></div>)

Document

110

Can | modify the layout on the fly?

Can | modify the layout on the fly?

® Yes!

® The DOM can be manipulated via code or scripts included on the page
o AKA: everything you see can be rendered dynamically

® Fven the browser can be manipulated via code

® Code can change your window, move you back and torward through
browsing history, read cookies... anything

112

In that sense, websites are just programs

® Partially executed on the client side
® HTML rendering, JavaScript, extensions, etc.

® Partially executed on the server side
® Python, CGl, PHP, ASP, server-side JavaScript (ew), etc.

® And programs, as we know, can have lots of probelms

113

Next time...

® \\We get into the web security model
® Same-Origin Policy
® \We get into web attacks (SQL injection, XSS, CSRF)!

® You'll implement a bunch of these in PA3

114

