
CSE127, Computer Security
System Security II: Side channels, Covert channels, Caches, Meltdown, 

Spectre



Housekeeping
General course things to know

• PA2 due at 1/29 at 11:59 

• This one is a toughie. Good luck!  

• PA3 released 1/30 at midnight 

• Web attacks (we start talking about the web on Thursday) 

• My read: not as bad at PA2, but note less time (~1.5 weeks instead of 2 
weeks) 

• Things to get ready for: SQL injection, XSS, and… JavaScript (not my 
favorite language)
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Previously on CSE127… 
Systems + Privilege

• Last class we talked about isolation and privilege 

• How we implement least privilege, privilege separation, and complete 
mediation in operating systems + processes 

• Basic idea: protect the sensitive or secret stuff so it can’t be access 
across a trust boundary (e.g., recall protected kernel memory reads from 
user mode) 

• Assumption: we know what the trust boundaries are and, specifically, that 
access to something is easy to identify
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Today’s lecture — Side Channels
Learning Objectives

• Understand the basic concept of a side channel, how side channels work in 
practice, and where we might find interesting side channels 

• Remind ourselves the basics of a CPU cache and understand the risks and 
dangers of cache side channels 

• Get into the details of very famous architectural side channel attacks: 
Rowhammer, Meltdown, and Spectre
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Side Channels

5



A hypothetical
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passwd = “abcdefghijklmnop” 

def check_passwd(inp): 

    for x in range(len(inp)): 

       if inp[x] != passwd[x]: 

           return False 

    return True

• What does this code do? 

• What is the time complexity of 
the function check_passwd? 
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A hypothetical

8

passwd = “abcdefghijklmnop” 

def check_passwd(inp): 

    for x in range(len(inp)): 

       if inp[x] != passwd[x]: 

           return False 

    return True

• What does this code do? 

• What is the time complexity of 
the function check_passwd?  

• Does this function take the same 
amount of time every time you 
call it?

No! It depends on where 
the first mismatch is.



Breaking our beautiful password checker
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passwd = “abcdefghijklmnop” 

def check_passwd(inp): 

    for x in range(len(inp)): 

       if inp[x] != passwd[x]: 

           return False 

    return True

• Let’s say we want to learn what 
the password is, we have control 
of inp and we have infinite 
guesses. How might we do this?



Breaking our beautiful password checker
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passwd = “abcdefghijklmnop” 

def check_passwd(inp): 

    for x in range(len(inp)): 

       if inp[x] != passwd[x]: 

           return False 

    return True

• One strategy… 

• Start with a random password, 
time how long it takes to get a 
response 

• Start changing one byte at a time, 
starting with first character (a, b, 
c… etc.), measure time taken 

• Longer responses mean more 
correct letters!



Side Channels
Yeesh

• We are taught to think of systems, functions, and algorithms as black boxes 

• AKA abstractions that consume input and produce output 

• We assume that all side effects are about output (e.g., values in memory,  
I/O, etc.) 

• But sometimes…. critical information can be revealed in how the output is produced 

• E.g., timing… but many others, how loud, how hot… these are artifacts of the 
implementation rather than the abstraction 

• Side channel: A source of information beyond the output specified by the abstraction
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Types of Side Channels
Consumption vs. Emission
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• Consumption: how much of a resource is being utilized to perform the 
operation? 

• Time is one example… others?
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• Consumption: how much of a resource is being utilized to perform the 
operation? 

• Time is one example… others? 

• Power, memory, network, etc. 

• Emissions: what out-of-band signal is generated in the course of performing 
the operation?  

• EM radiation, sound, movement, error messages, etc.
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• Consumption: how much of a resource is being utilized to perform the 
operation? 

• Time is one example… others? 

• Power, memory, network, etc. 

• Emissions: what out-of-band signal is generated in the course of performing 
the operation?  

• EM radiation, sound, movement, error messages, etc.



How might you read the computer screen from the window?

15 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner



Reflections are your friend!

16 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner



Reflections are your friend!
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The craziest reflection of them all… 

18 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner



Side Channel Examples

19 https://www.sjoerdlangkemper.nl/2016/11/01/tenex-password-bug/

Tenex password verification

• Old OS named Tenex; vulnerability was discovered by 
Alan Bell in 1974 

• Basic software bug was the same… but how to 
exploit?  

• Tenex offered userspace programs a lot of control 
over paging 

• Basic idea: split user input password over multiple 
memory pages, forcing system to fault if next page 
is not in memory 

• System will not fault if the check fails, allowing user to 
recover full password in linear time



Side Channel Examples

20 https://en.wikipedia.org/wiki/Power_analysis

Power as a side channel

• Let’s say there’s a cryptographic secret maintained in 
hardware 

• Can never be read, only used (e.g., your phone) 

• Simple Power Analysis (SPA) 

• Change in power draw can correspond to 
underlying values or operations 

• Differential Power Analysis (DPA) 

• Use signal processing techniques to subtract out 
noise cause by other activity you aren’t interested in
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What is the attack the authors want to conduct?

Side Channel Examples
Keyboard acoustic emanations
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What is the attack the authors want to conduct?

Covertly or overtly record keystrokes

Side Channel Examples
Keyboard acoustic emanations
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What is the attack the authors want to conduct?

Attacker can use 
keystrokes to recover 
passwords or other 
secrets

Side Channel Examples
Keyboard acoustic emanations

From: Keyboard Acoustic Emanations Revisited
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Side Channel Examples
Decrypting RSA keys through sound

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis



Aside: Covert Channels

• Side channels are inadvertent artifacts of the implementation that can be 
analyzed to extract information across a trust boundary 

• Covert channels are the same idea, but actually on purpose 

• One party is trying to leak information in a way that won’t be obvious 

• They encode that information into some side channel (e.g., variation in time, 
memory usage, etc.) 

• Information is extracted on the other end 

• These are really hard to implement, but also really hard to protect against.
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Rowhammer
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How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there 
for?
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How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there 
for? 

• What happens if the computer gets unplugged or dies? 

• RAM is what’s called volatile memory: data retained only as long as power is 
on 

• As opposed to persistent (or non-volatile) memory which retains data even 
without power (e.g., flash, magnetic disks) 

• Why do we have RAM in the first place, if it’s so volatile?
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How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there 
for? 

• What happens if the computer gets unplugged or dies? 

• RAM is what’s called volatile memory: data retained only as long as power is 
on 

• As opposed to persistent (or non-volatile) memory which retains data even 
without power (e.g., flash, magnetic disks) 

• Why do we have RAM in the first place, if it’s so volatile? 

• It’s fast. We like fast.30



Two types of RAM
SRAM and DRAM

• Static RAM (SRAM) vs. Dynamic RAM (DRAM) 

• SRAM: Retains bit values in memory so long as there is power! 

• Typically faster 

• Lower density (SRAM doesn’t get so big; requires 6 transistors per bit) 

• More expensive 

• DRAM: requires a periodic refresh to maintain a stored value 

• Refresh happens ~64ms 

• Higher capacity  

• Lower cost… DRAM is what’s in all of our machines31



How does DRAM work?

32

1

DRAM cells are essentially just capacitors. What is a capacitor?

Write “1”



How does DRAM work?
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1

DRAM must be refreshed, so how does that work?

Write “1”



How does DRAM work?
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1 1

Every refresh period, all cells are read from and then written to

Write “1” Read / Write



How does DRAM work?
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1 1

What happens if we don’t refresh the cell?

Write “1” Read / Write



How does DRAM work?
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1 1 0

What happens if we don’t refresh the cell?

Write “1” Read / Write



How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows 

• ~1KB per row 

• All cells in a row are refreshed 
together

37 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423



How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows 

• ~1KB per row 

• All cells in a row are refreshed 
together 

• To read a single bit, we read the 
row into a “row buffer” and index

38 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423



How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows 

• ~1KB per row 

• All cells in a row are refreshed 
together 

• To read a single bit, we read the 
row into a “row buffer” and index

39 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423



DRAM reliability
DRAM getting less reliable over time

• As DRAM has gotten more and 
more dense (4GB —> 32GB over 
roughly same area footprint)… 
many issues of reliability 

• Graph on right shows errors over 
time. Why do these errors occur?

40 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423



DRAM reliability
DRAM getting less reliable over time

• As DRAM has gotten more and 
more dense (4GB —> 32GB over 
roughly same area footprint)… 
many issues of reliability 

• Graph on right shows errors over 
time. Why do these errors occur? 

• As rows get closer and closer 
together, sending power to a row 
has a nontrivial probability of 
“leaking” charge to nearby rows, 
potentially flipping bits

41
https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423



Enter: Rowhammer
Make your own bit flips

• Basic idea: induce bit flips in between 
refresh periods by hammering memory 
lines that sandwich important pages 

• Identify a target row (in this case, the 
purple row) 

• Sandwich it between two rows you 
control (e.g., page in everything else 
yourself, but more clever ways to do 
this too) 

• Repeatedly read from rows you control 
(forcing power through the row)42



Rowhammer attack model
Threat model

• Attacker code is executing on same 
machine as the victim, but with less 
privileges 

• When might this happen in practice?
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Rowhammer attack model
Threat model

• Attacker code is executing on same 
machine as the victim, but with less 
privileges 

• When might this happen in practice? 

• All the time! 

• Userland attacking kernel 

• JavaScript attacking browser 

• Guest OS on host OS
44



Who cares?
Some bits are important

45



Who cares?
Some bits are important
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What do we do about rowhammer?

• ECC memory 

• Compute error correcting code on write, check on read 

• Significant mitigation to rowhammer attacks, but still, some attacks will work 

• Somewhat costly to do this check  

• Memory controller limitations on “hammering” or additional adjacent line 
refresh 

• Memory controller needs to keep state; could have impact 

• Issue still persists to this day.47



Cache Side Channels
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What is a CPU cache?
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What is a CPU cache?

• Main memory is dense (high capacity) … but slow  

• 1 – 4 clock cycles for cache read 

• Hundreds of clock cycles for memory read  

• Processors will try to “cache” recently used memory 

• Cache typically implemented at SRAM (notably much smaller capacity than 
DRAM)
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Cache Hierarchy
Caches all the way down

• There are multiple layers of caches… 

• L1 (on chip), L2, L3; each increasing in 
size but slightly decreasing in speed 

• If it’s not in L1, L2, or L3, then we go to 
DRAM

51



Cache Hierarchy
Caches all the way down

• There are multiple layers of caches… 

• L1 (on chip), L2, L3; each increasing in 
size but slightly decreasing in speed 

• If it’s not in L1, L2, or L3, then we go to 
DRAM 

• Note the cache is a shared system 
resource 

• “Just a performance optimization” —> 
has no impact on reliability… but it does 
change time52



Cache Organization
How do caches actually work?

• Cache line 

• Unit of cache granularity, e.g., 64 
bytes  

• Smallest unit of putting something “in 
the cache” 

• Set associativity 

• Cache lines are grouped into sets 

• Each memory address is mapped to a 
set of cache lines; (associativity), 
reducing potential cache misses 
without causing too much eviction

53 https://en.wikipedia.org/wiki/CPU_cache



Cache Side Channel Attacks

• Threat model: 

• We want to protect victim memory 

• Attacker and victim are two different execution domains (e.g., processes or 
privilege levels) on the same physical system 

• Attacker is able to invoke (directly or indirectly) functionality exposed by the 
victim 

• Sometimes with attacker-supplied parameters

54



Attacker capabilities

• Prime 

• Place a known address in the cache. How?
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Attacker capabilities

• Prime 

• Place a known address in the cache. How? 

• Evict 

• Remove something from the cache. How?
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Attacker capabilities

• Prime 

• Place a known address in the cache. How? 

• Evict 

• Remove something from the cache. How? 

• Flush 

• Remove a given address from the cache (cflush on x86) 

• Measure 

• Identify how long it takes to do something57



Cache Side Channel Attack Strategy

1. Manipulate cache into a known state 

2. Make victim run 

3. Try to infer what has changed in the cache as a result of victim code running
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Cache Side Channel Attack Strategy

• Three basic techniques… 

• Evict & Time 

• Kick stuff out of the cache and see if the victim slows down as a result 

• Prime & Probe 

• Put stuff in the cache, run the victim and see if accesses are still fast (no 
conflict) or slowed down (have been displaced by memory accesses) 

• Flush & Reload 

• Flush a particular line from the cache, run the victim and see if your access 
are still fast as a result59



Evict & Time
• Run the victim code several times and time it 

• Get a baseline 

• Evict (portions of) the cache 

• Access conflicting memory locations so previous cache contents are replaced 
with recently-accessed data  

• Run the victim code again and retime it  

• If it is slower than before, cache lines evicted by the attacker must have been 
used by the victim 

• We now know something about the addresses used by victim code
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Prime & Probe
• Prime the cache 

• Access may memory locations (covering all cache lines of interest) so previous 
cache contents are replaced with attacker addresses 

• Time access to each cache line to establish speed for “in cache” references 

• Run victim code 

• Attacker retimes access to its own memory locations 

• If any are slower, it means the corresponding cache line was used by the victim 

• We again, know something now about addresses used by the victim
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Flush & Reload
• Specifically, for shared memory 

• E.g., shared libraries, fork() sharing, deduplication in VMs 

• Time memory access to (potentially) shared regions 

• Flush specific lines from the cache 

• Invoke victim code 

• Retime access to flushed addresses, if still fast, then was used by the victim 

• Because we flushed it, it should be slow, unless the victim reloaded it 

• Again, addresses used by the victim.
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Things to note about these attacks

• The error on any individual measurement is high 

• Repeat many times and use central tendency statistics (e.g., medians) to 
filter outliers 

• Do they… work? 

• “Our error-correcting and error-handling high-throughput covert channel 
can sustain transmission rates of more than 45 KBps on Amazon EC2.”

63

Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud



Meltdown

64



What does Meltdown enable?
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Recall from last time…

66

• In order to avoid context switching for syscalls, kernel virtual memory is 
mapped onto every process 

• Otherwise, system calls would take forever, lots of context switching, etc. 

• Remember isolation guarantees: 

• Page table access control ensures kernel pages are only read when 
processor register is in privileged mode!



Abstraction vs. Implementation in Architecture

67

• Instruction Set Architecture (ISA) 

• Defines interface between hardware and software… “in a perfect world” 

• Microarchitecture is the implementation of the ISA on a chip 

• Oftentimes, there are subtle differences in implementation and interface, 
leading to what are called microarchitectural side channel attacks.



Abstraction vs. Implementation in Architecture
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• Instruction Set Architecture (ISA) 

• Defines interface between hardware and software… “in a perfect world” 

• Microarchitecture is the implementation of the ISA on a chip 

• Oftentimes, there are subtle differences in implementation and interface, 
leading to what are called microarchitectural side channel attacks. 

• Meltdown (and Spectre) are such attacks.



Example: Instruction Pipelining

69

• Processors often break up instructions into 
smaller parts so parts can be processed in 
parallel 

• Instructions appear to be executed one at 
a time and in order 

• But under the hood, dependencies get 
resolved through pipelining effects

https://en.wikipedia.org/wiki/Instruction_pipelining



Example: Out-of-Order Execution
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• Sometimes, instructions can be safely executed out of order  

• Avoid unnecessary pipeline stalls 

• But, architecturally, it appears instructions are executed in order 



Another example: Speculative Execution
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• Sometimes control flow depends on output of an earlier instruction 

• E.g., conditional branch, function pointer 

• Rather than wait to know for sure which way to go, the processor may speculate 
about the direction/target of a branch 

• Guess based on the past 

• If guess is correct, performance is improved 

• If guess is wrong, speculated computation is discarded and everythign is re-
computed using the correct value 

• No impact on correctness… so what’s the issue?



Microarchitectural side effects can leak 
privileged information.
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Meltdown
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if (x < array.length()) { 

    value = array[x]; 

}

Speculative execution to our downfall



Meltdown
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if (x < array.length()) { 

    value = array[x]; 

}

Speculative execution to our downfall • Checking array length can take some 
time… so processor will speculatively 
fetch value



Meltdown
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if (x < array.length()) { 

    value = array[x]; 

}

Speculative execution to our downfall • Checking array length can take some 
time… so processor will speculatively 
fetch value 

• Will store that value in the cache

L1 cache

value



Meltdown
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if (x < array.length()) { 

    value = array[x]; 

}

Speculative execution to our downfall • Checking array length can take some time… 
so processor will speculatively fetch value 

• Will store that value in the cache 

• If x ends up larger than the array length, we 
obviously don’t take the branch 

• But… value has been loaded into the 
cache 

• No privilege checks happen because the 
branch is not taken. 

• What happens if array[x] is protected 
memory? L1 cache

value



Building blocks of Meltdown
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• Out of order instructions that have microarchitectural side effects are called 
transient instructions 

• Through side channels, we can read arbitrary memory from kernel without 
even exploiting any bugs!



Meltdown to read kernel memory
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• What does the following code do?

*(char *) 0; 

array[0] = 0;



Meltdown to read kernel memory
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• What does the following code do? 

• Null pointer dereference! Should throw an exception right away. Except…

*(char *) 0; 

array[0] = 0;



Meltdown to read kernel memory
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• What does the following code do? 

• Null pointer dereference! Should throw an exception right away. Except… 

• Somehow, array[0] was cached, and the privilege check doesn’t happen until 
some time later… uh oh

*(char *) 0; 

array[0] = 0;



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache)



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache) 

• This line uses that byte as an index in a 
big array



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache) 

• This line uses that byte as an index in a 
big array 

• Sweep over all pages of array



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache) 

• This line uses that byte as an index in a 
big array 

• Flush + reload all pages of the array

Is data = 0?



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache) 

• This line uses that byte as an index in a 
big array 

• Flush + reload all pages of the array

Is data = 1?



Meltdown — it’s a huge problem
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char data = *(char*)0xffff00e0 

array[data * 4096] = 0;

• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting 
it in cache) 

• This line uses that byte as an index in a 
big array 

• Flush + reload all pages of the array

Is data = 2?



Meltdown — it’s a huge problem
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• Goal: read one byte of kernel memory 

• Basic idea: Combine speculative 
execution + flush & reload + late 
privilege check 

• This line reads a byte from an address in 
memory and stores it in data (putting it in 
cache) 

• This line uses that byte as an index in a big 
array 

• Flush + reload all pages of the array 

• If you do this fast enough… 

Meltdown enables reading 
arbitrary kernel memory from any 

userland process.



Meltdown Bug
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• Using out-of-order execution, attacker can read any 
data at any address 

• Privilege checks for the kernel are sometimes too 
slow to stop this 

• Kernel memory is leaked 

• Entire physical memory is typically also accessible 
in kernel space… meaning you can potentially leak 
other processes private memory as well
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https://www.youtube.com/watch?v=RbHbFkh6eeE

Meltdown Demo (embed was not working)



What do we do about Meltdown?
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• Ideas?



What do we do about Meltdown?

92

• Ideas? 

• Immediate software only fix: stop mapping kernel memory pages in user processes 

• But this would make programs so slow… 

• Instead, we do something called Kernel Page Table Isolation 

• Key idea: Map kernel memory in userspace still, but page everything out unless 
you’re running in kernel mode 

• 5% — 30% slowdown for most workload 

• Newer processes have a microarchitectural fix where the privilege check happens 
fast, but many are still vulnerable



Spectre
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Branch Prediction
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• Branch prediction is a feature in CPUs that tries to predict pathways taken to 
conduct efficient speculative execution



Branch Prediction
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• Branch prediction is a feature in CPUs that tries to predict pathways taken to 
conduct efficient speculative execution

for (i = 0; i < 500; i++){ 

   array[i] = ‘h’ 

} 

array2[0] = 0;



Branch Prediction
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• Branch prediction is a feature in CPUs that tries to predict pathways taken to 
conduct efficient speculative execution 

• Branch predictor would be pretty damn sure array[i] is going to be used; 
speculatively execute that line instead of the next one

for (i = 0; i < 500; i++){ 

   array[i] = ‘h’ 

} 

array2[0] = 0;



Spectre — it gets worse
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• Combines cache side channels + branch prediction for arbitrary memory 
reading 

• Can break the process invariant — e.g., malicious processes can trick the CPU 
into loading other process memory into the cache, and leaks that memory 
voluntarily



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 0; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 0; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 0; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 1; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 1; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 2; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor
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• Goal: Train branch predictor to leak memory values

index = 2; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor
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• Goal: Train branch predictor to leak memory values

index = 3; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor
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• Goal: Train branch predictor to leak memory values

index = 3; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 4; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor



Spectre attacks (simplified)
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• Goal: Train branch predictor to leak memory values

index = 4; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will 
erroneously place “K” 
in the cache…
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• Goal: Train branch predictor to leak memory values

index = 4; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will 
erroneously place “K” 
in the cache…

Extract just like you would 
in Meltdown (flush + reload)
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• Goal: Train branch predictor to leak memory values

index = 4; 

char* data = “textKEY”; 

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will 
erroneously place “K” 
in the cache…

Extract just like you would 
in Meltdown (flush + reload)

game over gg
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• Ideas?



What do we do about Spectre?
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• Ideas? 

• Admittedly very rough; but good news is it’s hard to exploit 

• Broad issue about speculation and branch prediction 

• Could disable speculation on branches… but htere’s a huge performance 
impact as a result 

• Also can only be done by chip manufacturer 

• Selectively insert instructions to stop speculation at sensitive branches 

• LFENCE 

• All of these are bandaids, not solutions



Sea-change shift in last 8 years
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• Computer architects spent the last 20 years optimizing for common use case 

• Assumption was that if optimization doesn’t change output then we’re all 
good 

• Sadly, every optimization is now under intense, immense scrutiny 

• New microarchitectual side-channel papers are published almost every 
conference… 

• Hardware vendors and computer architects are retooling to figure out how to 
still offer optimizations without huge security hit 

• ¯\_(ツ)_/¯ it’s an ongoing field



My unsolicited 2c on side channel attacks
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• Side channels are epicly cool and fun 

• They entertain the part of your brain that likes puzzles 

• Are they the most important harm / security threat facing people today? 

• No. They’re niche, hard to execute, and often probabilistic in practice 

• But they’re worth study… even if to teach us all the ways in which our 
assumptions might be flawed :)  



Next time…
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• We change gears!  

• Done with the “low level” parts of the course material 

• Moving up the OSI stack into the Web; web attacks, web defenses, etc. 

• Web will be the focus of PA3 

• Thinking ahead to the midterm… 

• Application security, systems security, and web security are the main units 
we’ll cover


