
CSE127, Computer Security
System Security II: Side channels, Covert channels, Caches, Meltdown,

Spectre

Housekeeping
General course things to know

• PA2 due at 1/29 at 11:59

• This one is a toughie. Good luck!

• PA3 released 1/30 at midnight

• Web attacks (we start talking about the web on Thursday)

• My read: not as bad at PA2, but note less time (~1.5 weeks instead of 2
weeks)

• Things to get ready for: SQL injection, XSS, and… JavaScript (not my
favorite language)

2

Previously on CSE127…
Systems + Privilege

• Last class we talked about isolation and privilege

• How we implement least privilege, privilege separation, and complete
mediation in operating systems + processes

• Basic idea: protect the sensitive or secret stuff so it can’t be access
across a trust boundary (e.g., recall protected kernel memory reads from
user mode)

• Assumption: we know what the trust boundaries are and, specifically, that
access to something is easy to identify

3

Today’s lecture — Side Channels
Learning Objectives

• Understand the basic concept of a side channel, how side channels work in
practice, and where we might find interesting side channels

• Remind ourselves the basics of a CPU cache and understand the risks and
dangers of cache side channels

• Get into the details of very famous architectural side channel attacks:
Rowhammer, Meltdown, and Spectre

4

Side Channels

5

A hypothetical

6

passwd = “abcdefghijklmnop”

def check_passwd(inp):

 for x in range(len(inp)):

 if inp[x] != passwd[x]:

 return False

 return True

• What does this code do?

• What is the time complexity of
the function check_passwd?

A hypothetical

7

passwd = “abcdefghijklmnop”

def check_passwd(inp):

 for x in range(len(inp)):

 if inp[x] != passwd[x]:

 return False

 return True

• What does this code do?

• What is the time complexity of
the function check_passwd?

• Does this function take the same
amount of time every time you
call it?

A hypothetical

8

passwd = “abcdefghijklmnop”

def check_passwd(inp):

 for x in range(len(inp)):

 if inp[x] != passwd[x]:

 return False

 return True

• What does this code do?

• What is the time complexity of
the function check_passwd?

• Does this function take the same
amount of time every time you
call it?

No! It depends on where
the first mismatch is.

Breaking our beautiful password checker

9

passwd = “abcdefghijklmnop”

def check_passwd(inp):

 for x in range(len(inp)):

 if inp[x] != passwd[x]:

 return False

 return True

• Let’s say we want to learn what
the password is, we have control
of inp and we have infinite
guesses. How might we do this?

Breaking our beautiful password checker

10

passwd = “abcdefghijklmnop”

def check_passwd(inp):

 for x in range(len(inp)):

 if inp[x] != passwd[x]:

 return False

 return True

• One strategy…

• Start with a random password,
time how long it takes to get a
response

• Start changing one byte at a time,
starting with first character (a, b,
c… etc.), measure time taken

• Longer responses mean more
correct letters!

Side Channels
Yeesh

• We are taught to think of systems, functions, and algorithms as black boxes

• AKA abstractions that consume input and produce output

• We assume that all side effects are about output (e.g., values in memory,
I/O, etc.)

• But sometimes…. critical information can be revealed in how the output is produced

• E.g., timing… but many others, how loud, how hot… these are artifacts of the
implementation rather than the abstraction

• Side channel: A source of information beyond the output specified by the abstraction

11

Types of Side Channels
Consumption vs. Emission

12

• Consumption: how much of a resource is being utilized to perform the
operation?

• Time is one example… others?

Types of Side Channels
Consumption vs. Emission

13

• Consumption: how much of a resource is being utilized to perform the
operation?

• Time is one example… others?

• Power, memory, network, etc.

• Emissions: what out-of-band signal is generated in the course of performing
the operation?

• EM radiation, sound, movement, error messages, etc.

Types of Side Channels
Consumption vs. Emission

14

• Consumption: how much of a resource is being utilized to perform the
operation?

• Time is one example… others?

• Power, memory, network, etc.

• Emissions: what out-of-band signal is generated in the course of performing
the operation?

• EM radiation, sound, movement, error messages, etc.

How might you read the computer screen from the window?

15 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner

Reflections are your friend!

16 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner

Reflections are your friend!

17

The craziest reflection of them all…

18 From: Compromising Reflections – or – How to Read LCD Monitors Around the Corner

Side Channel Examples

19 https://www.sjoerdlangkemper.nl/2016/11/01/tenex-password-bug/

Tenex password verification

• Old OS named Tenex; vulnerability was discovered by
Alan Bell in 1974

• Basic software bug was the same… but how to
exploit?

• Tenex offered userspace programs a lot of control
over paging

• Basic idea: split user input password over multiple
memory pages, forcing system to fault if next page
is not in memory

• System will not fault if the check fails, allowing user to
recover full password in linear time

Side Channel Examples

20 https://en.wikipedia.org/wiki/Power_analysis

Power as a side channel

• Let’s say there’s a cryptographic secret maintained in
hardware

• Can never be read, only used (e.g., your phone)

• Simple Power Analysis (SPA)

• Change in power draw can correspond to
underlying values or operations

• Differential Power Analysis (DPA)

• Use signal processing techniques to subtract out
noise cause by other activity you aren’t interested in

21

What is the attack the authors want to conduct?

Side Channel Examples
Keyboard acoustic emanations

22

What is the attack the authors want to conduct?

Covertly or overtly record keystrokes

Side Channel Examples
Keyboard acoustic emanations

23

What is the attack the authors want to conduct?

Attacker can use
keystrokes to recover
passwords or other
secrets

Side Channel Examples
Keyboard acoustic emanations

From: Keyboard Acoustic Emanations Revisited

24

Side Channel Examples
Decrypting RSA keys through sound

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis

Aside: Covert Channels

• Side channels are inadvertent artifacts of the implementation that can be
analyzed to extract information across a trust boundary

• Covert channels are the same idea, but actually on purpose

• One party is trying to leak information in a way that won’t be obvious

• They encode that information into some side channel (e.g., variation in time,
memory usage, etc.)

• Information is extracted on the other end

• These are really hard to implement, but also really hard to protect against.

25

Rowhammer

26

How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there
for?

27

How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there
for?

• What happens if the computer gets unplugged or dies?

28

How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there
for?

• What happens if the computer gets unplugged or dies?

• RAM is what’s called volatile memory: data retained only as long as power is
on

• As opposed to persistent (or non-volatile) memory which retains data even
without power (e.g., flash, magnetic disks)

• Why do we have RAM in the first place, if it’s so volatile?

29

How does RAM actually work?
Nothing is safe

• If you load something in memory, how long can you expect it to stay there
for?

• What happens if the computer gets unplugged or dies?

• RAM is what’s called volatile memory: data retained only as long as power is
on

• As opposed to persistent (or non-volatile) memory which retains data even
without power (e.g., flash, magnetic disks)

• Why do we have RAM in the first place, if it’s so volatile?

• It’s fast. We like fast.30

Two types of RAM
SRAM and DRAM

• Static RAM (SRAM) vs. Dynamic RAM (DRAM)

• SRAM: Retains bit values in memory so long as there is power!

• Typically faster

• Lower density (SRAM doesn’t get so big; requires 6 transistors per bit)

• More expensive

• DRAM: requires a periodic refresh to maintain a stored value

• Refresh happens ~64ms

• Higher capacity

• Lower cost… DRAM is what’s in all of our machines31

How does DRAM work?

32

1

DRAM cells are essentially just capacitors. What is a capacitor?

Write “1”

How does DRAM work?

33

1

DRAM must be refreshed, so how does that work?

Write “1”

How does DRAM work?

34

1 1

Every refresh period, all cells are read from and then written to

Write “1” Read / Write

How does DRAM work?

35

1 1

What happens if we don’t refresh the cell?

Write “1” Read / Write

How does DRAM work?

36

1 1 0

What happens if we don’t refresh the cell?

Write “1” Read / Write

How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows

• ~1KB per row

• All cells in a row are refreshed
together

37 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows

• ~1KB per row

• All cells in a row are refreshed
together

• To read a single bit, we read the
row into a “row buffer” and index

38 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

How is DRAM organized?
Organizing capacitors

• DRAM cells are groups into rows

• ~1KB per row

• All cells in a row are refreshed
together

• To read a single bit, we read the
row into a “row buffer” and index

39 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

DRAM reliability
DRAM getting less reliable over time

• As DRAM has gotten more and
more dense (4GB —> 32GB over
roughly same area footprint)…
many issues of reliability

• Graph on right shows errors over
time. Why do these errors occur?

40 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

DRAM reliability
DRAM getting less reliable over time

• As DRAM has gotten more and
more dense (4GB —> 32GB over
roughly same area footprint)…
many issues of reliability

• Graph on right shows errors over
time. Why do these errors occur?

• As rows get closer and closer
together, sending power to a row
has a nontrivial probability of
“leaking” charge to nearby rows,
potentially flipping bits

41
https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

Enter: Rowhammer
Make your own bit flips

• Basic idea: induce bit flips in between
refresh periods by hammering memory
lines that sandwich important pages

• Identify a target row (in this case, the
purple row)

• Sandwich it between two rows you
control (e.g., page in everything else
yourself, but more clever ways to do
this too)

• Repeatedly read from rows you control
(forcing power through the row)42

Rowhammer attack model
Threat model

• Attacker code is executing on same
machine as the victim, but with less
privileges

• When might this happen in practice?

43

Rowhammer attack model
Threat model

• Attacker code is executing on same
machine as the victim, but with less
privileges

• When might this happen in practice?

• All the time!

• Userland attacking kernel

• JavaScript attacking browser

• Guest OS on host OS
44

Who cares?
Some bits are important

45

Who cares?
Some bits are important

46

What do we do about rowhammer?

• ECC memory

• Compute error correcting code on write, check on read

• Significant mitigation to rowhammer attacks, but still, some attacks will work

• Somewhat costly to do this check

• Memory controller limitations on “hammering” or additional adjacent line
refresh

• Memory controller needs to keep state; could have impact

• Issue still persists to this day.47

Cache Side Channels

48

What is a CPU cache?

49

What is a CPU cache?

• Main memory is dense (high capacity) … but slow

• 1 – 4 clock cycles for cache read

• Hundreds of clock cycles for memory read

• Processors will try to “cache” recently used memory

• Cache typically implemented at SRAM (notably much smaller capacity than
DRAM)

50

Cache Hierarchy
Caches all the way down

• There are multiple layers of caches…

• L1 (on chip), L2, L3; each increasing in
size but slightly decreasing in speed

• If it’s not in L1, L2, or L3, then we go to
DRAM

51

Cache Hierarchy
Caches all the way down

• There are multiple layers of caches…

• L1 (on chip), L2, L3; each increasing in
size but slightly decreasing in speed

• If it’s not in L1, L2, or L3, then we go to
DRAM

• Note the cache is a shared system
resource

• “Just a performance optimization” —>
has no impact on reliability… but it does
change time52

Cache Organization
How do caches actually work?

• Cache line

• Unit of cache granularity, e.g., 64
bytes

• Smallest unit of putting something “in
the cache”

• Set associativity

• Cache lines are grouped into sets

• Each memory address is mapped to a
set of cache lines; (associativity),
reducing potential cache misses
without causing too much eviction

53 https://en.wikipedia.org/wiki/CPU_cache

Cache Side Channel Attacks

• Threat model:

• We want to protect victim memory

• Attacker and victim are two different execution domains (e.g., processes or
privilege levels) on the same physical system

• Attacker is able to invoke (directly or indirectly) functionality exposed by the
victim

• Sometimes with attacker-supplied parameters

54

Attacker capabilities

• Prime

• Place a known address in the cache. How?

55

Attacker capabilities

• Prime

• Place a known address in the cache. How?

• Evict

• Remove something from the cache. How?

56

Attacker capabilities

• Prime

• Place a known address in the cache. How?

• Evict

• Remove something from the cache. How?

• Flush

• Remove a given address from the cache (cflush on x86)

• Measure

• Identify how long it takes to do something57

Cache Side Channel Attack Strategy

1. Manipulate cache into a known state

2. Make victim run

3. Try to infer what has changed in the cache as a result of victim code running

58

Cache Side Channel Attack Strategy

• Three basic techniques…

• Evict & Time

• Kick stuff out of the cache and see if the victim slows down as a result

• Prime & Probe

• Put stuff in the cache, run the victim and see if accesses are still fast (no
conflict) or slowed down (have been displaced by memory accesses)

• Flush & Reload

• Flush a particular line from the cache, run the victim and see if your access
are still fast as a result59

Evict & Time
• Run the victim code several times and time it

• Get a baseline

• Evict (portions of) the cache

• Access conflicting memory locations so previous cache contents are replaced
with recently-accessed data

• Run the victim code again and retime it

• If it is slower than before, cache lines evicted by the attacker must have been
used by the victim

• We now know something about the addresses used by victim code

60

Prime & Probe
• Prime the cache

• Access may memory locations (covering all cache lines of interest) so previous
cache contents are replaced with attacker addresses

• Time access to each cache line to establish speed for “in cache” references

• Run victim code

• Attacker retimes access to its own memory locations

• If any are slower, it means the corresponding cache line was used by the victim

• We again, know something now about addresses used by the victim

61

Flush & Reload
• Specifically, for shared memory

• E.g., shared libraries, fork() sharing, deduplication in VMs

• Time memory access to (potentially) shared regions

• Flush specific lines from the cache

• Invoke victim code

• Retime access to flushed addresses, if still fast, then was used by the victim

• Because we flushed it, it should be slow, unless the victim reloaded it

• Again, addresses used by the victim.

62

Things to note about these attacks

• The error on any individual measurement is high

• Repeat many times and use central tendency statistics (e.g., medians) to
filter outliers

• Do they… work?

• “Our error-correcting and error-handling high-throughput covert channel
can sustain transmission rates of more than 45 KBps on Amazon EC2.”

63

Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud

Meltdown

64

What does Meltdown enable?

65

Recall from last time…

66

• In order to avoid context switching for syscalls, kernel virtual memory is
mapped onto every process

• Otherwise, system calls would take forever, lots of context switching, etc.

• Remember isolation guarantees:

• Page table access control ensures kernel pages are only read when
processor register is in privileged mode!

Abstraction vs. Implementation in Architecture

67

• Instruction Set Architecture (ISA)

• Defines interface between hardware and software… “in a perfect world”

• Microarchitecture is the implementation of the ISA on a chip

• Oftentimes, there are subtle differences in implementation and interface,
leading to what are called microarchitectural side channel attacks.

Abstraction vs. Implementation in Architecture

68

• Instruction Set Architecture (ISA)

• Defines interface between hardware and software… “in a perfect world”

• Microarchitecture is the implementation of the ISA on a chip

• Oftentimes, there are subtle differences in implementation and interface,
leading to what are called microarchitectural side channel attacks.

• Meltdown (and Spectre) are such attacks.

Example: Instruction Pipelining

69

• Processors often break up instructions into
smaller parts so parts can be processed in
parallel

• Instructions appear to be executed one at
a time and in order

• But under the hood, dependencies get
resolved through pipelining effects

https://en.wikipedia.org/wiki/Instruction_pipelining

Example: Out-of-Order Execution

70

• Sometimes, instructions can be safely executed out of order

• Avoid unnecessary pipeline stalls

• But, architecturally, it appears instructions are executed in order

Another example: Speculative Execution

71

• Sometimes control flow depends on output of an earlier instruction

• E.g., conditional branch, function pointer

• Rather than wait to know for sure which way to go, the processor may speculate
about the direction/target of a branch

• Guess based on the past

• If guess is correct, performance is improved

• If guess is wrong, speculated computation is discarded and everythign is re-
computed using the correct value

• No impact on correctness… so what’s the issue?

Microarchitectural side effects can leak
privileged information.

72

Meltdown

73

if (x < array.length()) {

 value = array[x];

}

Speculative execution to our downfall

Meltdown

74

if (x < array.length()) {

 value = array[x];

}

Speculative execution to our downfall • Checking array length can take some
time… so processor will speculatively
fetch value

Meltdown

75

if (x < array.length()) {

 value = array[x];

}

Speculative execution to our downfall • Checking array length can take some
time… so processor will speculatively
fetch value

• Will store that value in the cache

L1 cache

value

Meltdown

76

if (x < array.length()) {

 value = array[x];

}

Speculative execution to our downfall • Checking array length can take some time…
so processor will speculatively fetch value

• Will store that value in the cache

• If x ends up larger than the array length, we
obviously don’t take the branch

• But… value has been loaded into the
cache

• No privilege checks happen because the
branch is not taken.

• What happens if array[x] is protected
memory? L1 cache

value

Building blocks of Meltdown

77

• Out of order instructions that have microarchitectural side effects are called
transient instructions

• Through side channels, we can read arbitrary memory from kernel without
even exploiting any bugs!

Meltdown to read kernel memory

78

• What does the following code do?

*(char *) 0;

array[0] = 0;

Meltdown to read kernel memory

79

• What does the following code do?

• Null pointer dereference! Should throw an exception right away. Except…

*(char *) 0;

array[0] = 0;

Meltdown to read kernel memory

80

• What does the following code do?

• Null pointer dereference! Should throw an exception right away. Except…

• Somehow, array[0] was cached, and the privilege check doesn’t happen until
some time later… uh oh

*(char *) 0;

array[0] = 0;

Meltdown — it’s a huge problem

81

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

Meltdown — it’s a huge problem

82

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

Meltdown — it’s a huge problem

83

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

Example adapted from Security & Privacy Academy

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

• This line uses that byte as an index in a
big array

Meltdown — it’s a huge problem

84

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

• This line uses that byte as an index in a
big array

• Sweep over all pages of array

Meltdown — it’s a huge problem

85

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

• This line uses that byte as an index in a
big array

• Flush + reload all pages of the array

Is data = 0?

Meltdown — it’s a huge problem

86

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

• This line uses that byte as an index in a
big array

• Flush + reload all pages of the array

Is data = 1?

Meltdown — it’s a huge problem

87

char data = *(char*)0xffff00e0

array[data * 4096] = 0;

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

• This line uses that byte as an index in a
big array

• Flush + reload all pages of the array

Is data = 2?

Meltdown — it’s a huge problem

88

• Goal: read one byte of kernel memory

• Basic idea: Combine speculative
execution + flush & reload + late
privilege check

• This line reads a byte from an address in
memory and stores it in data (putting it in
cache)

• This line uses that byte as an index in a big
array

• Flush + reload all pages of the array

• If you do this fast enough…

Meltdown enables reading
arbitrary kernel memory from any

userland process.

Meltdown Bug

89

• Using out-of-order execution, attacker can read any
data at any address

• Privilege checks for the kernel are sometimes too
slow to stop this

• Kernel memory is leaked

• Entire physical memory is typically also accessible
in kernel space… meaning you can potentially leak
other processes private memory as well

90

https://www.youtube.com/watch?v=RbHbFkh6eeE

Meltdown Demo (embed was not working)

What do we do about Meltdown?

91

• Ideas?

What do we do about Meltdown?

92

• Ideas?

• Immediate software only fix: stop mapping kernel memory pages in user processes

• But this would make programs so slow…

• Instead, we do something called Kernel Page Table Isolation

• Key idea: Map kernel memory in userspace still, but page everything out unless
you’re running in kernel mode

• 5% — 30% slowdown for most workload

• Newer processes have a microarchitectural fix where the privilege check happens
fast, but many are still vulnerable

Spectre

93

Branch Prediction

94

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

Branch Prediction

95

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (i = 0; i < 500; i++){

 array[i] = ‘h’

}

array2[0] = 0;

Branch Prediction

96

• Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

• Branch predictor would be pretty damn sure array[i] is going to be used;
speculatively execute that line instead of the next one

for (i = 0; i < 500; i++){

 array[i] = ‘h’

}

array2[0] = 0;

Spectre — it gets worse

97

• Combines cache side channels + branch prediction for arbitrary memory
reading

• Can break the process invariant — e.g., malicious processes can trick the CPU
into loading other process memory into the cache, and leaks that memory
voluntarily

Spectre attacks (simplified)

98

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

99

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

100

• Goal: Train branch predictor to leak memory values

index = 0;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

101

• Goal: Train branch predictor to leak memory values

index = 1;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

102

• Goal: Train branch predictor to leak memory values

index = 1;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

103

• Goal: Train branch predictor to leak memory values

index = 2;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

104

• Goal: Train branch predictor to leak memory values

index = 2;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

105

• Goal: Train branch predictor to leak memory values

index = 3;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

106

• Goal: Train branch predictor to leak memory values

index = 3;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

107

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Spectre attacks (simplified)

108

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

Spectre attacks (simplified)

109

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

Extract just like you would
in Meltdown (flush + reload)

Spectre attacks (simplified)

110

• Goal: Train branch predictor to leak memory values

index = 4;

char* data = “textKEY”;

if (index < 4)

arr[data[index] * 4096] 0

predictor

Branch prediction will
erroneously place “K”
in the cache…

Extract just like you would
in Meltdown (flush + reload)

game over gg

What do we do about Spectre?

111

• Ideas?

What do we do about Spectre?

112

• Ideas?

• Admittedly very rough; but good news is it’s hard to exploit

• Broad issue about speculation and branch prediction

• Could disable speculation on branches… but htere’s a huge performance
impact as a result

• Also can only be done by chip manufacturer

• Selectively insert instructions to stop speculation at sensitive branches

• LFENCE

• All of these are bandaids, not solutions

Sea-change shift in last 8 years

113

• Computer architects spent the last 20 years optimizing for common use case

• Assumption was that if optimization doesn’t change output then we’re all
good

• Sadly, every optimization is now under intense, immense scrutiny

• New microarchitectual side-channel papers are published almost every
conference…

• Hardware vendors and computer architects are retooling to figure out how to
still offer optimizations without huge security hit

• ¯_(ツ)_/¯ it’s an ongoing field

My unsolicited 2c on side channel attacks

114

• Side channels are epicly cool and fun

• They entertain the part of your brain that likes puzzles

• Are they the most important harm / security threat facing people today?

• No. They’re niche, hard to execute, and often probabilistic in practice

• But they’re worth study… even if to teach us all the ways in which our
assumptions might be flawed :)

Next time…

115

• We change gears!

• Done with the “low level” parts of the course material

• Moving up the OSI stack into the Web; web attacks, web defenses, etc.

• Web will be the focus of PA3

• Thinking ahead to the midterm…

• Application security, systems security, and web security are the main units
we’ll cover

