CSE127, Computer Security

System Security ll: Side channels, Covert channels, Caches, Meltdown,
Spectre

UCSan Diego

Housekeeping

General course things to know

® PA2 due at 1/29 at 11:59
® This one is a toughie. Good luck!
® PA3 released 1/30 at midnight
® \Web attacks (we start talking about the web on Thursday)

® My read: not as bad at PA2, but note less time (~1.5 weeks instead of 2
weeks)

® Things to get ready for: SQL injection, XSS, and... JavaScript (not my
favorite language)

Previously on CSE127...

Systems + Privilege

® | ast class we talked about isolation and privilege

® How we implement least privilege, privilege separation, and complete
mediation in operating systems + processes

® Basic idea: protect the sensitive or secret stuff so it can’t be access
across a trust boundary (e.g., recall protected kernel memory reads from
user mode)

® Assumption: we know what the trust boundaries are and, specifically, that
access to something is easy to identify

Today's lecture — Side Channels

Learning Objectives

® Understand the basic concept of a side channel, how side channels work in
oractice, and where we might find interesting side channels

® Remind ourselves the basics of a CPU cache and understand the risks and
dangers of cache side channels

® Get into the details of very famous architectural side channel attacks:
Rowhammer, Meltdown, and Spectre

Side Channels

A hypothetical

passwd = “abcdefghijklmnop” ® \What does this code do?

det check passwd(inp) : ® \What is the time complexity of

for x in range (len (inp)) : the function check_passwd?
if i1np[x] '= passwd[x]:
return False

return True

A hypothetical

passwd = “abcdefghijklmnop” ® \What does this code do?

det check passwd(inp) : ® \What is the time complexity of

if inp[x] !'= passwd[x]: ® Does this function take the same
amount of time every time you

return False call it?

return True

A hypothetical

passwd = “abcdefghijklmnop” ® \What does this code do?

det check passwd(inp) : ® \What is the time complexity of

if inp[x] !'= passwd[x]: ® Does this function take the same
amount of time every time you

return False call it?

return True
No! It depends on where

the first mismatch is.

Breaking our beautiful password checker

passwd = “abcdefghijklmnop”
® | et's say we want to learn what

def check passwd(inp): the password is, we have control
of inp and we have infinite

f] 1] . . .
or x in range(len(inp)) guesses. How might we do this?

if inp[x] '= passwd[x]:
return False

return True

10

Breaking our beautiful password checker

passwd = “abcdefghijklmnop” e One strategy...

f check ' . ‘
def check_passwd(inp) ® Start with a random password,

for x in range(len(inp)): time how long it takes to get a

response
if i1np[x] '= passwd[x]:

® Start changing one byte at a time,

starting with first character (a, b,
return True C... etc.), measure time taken

return False

® | onger responses mean more
correct letters!

11

Side Channels

Yeesh

® \We are taught to think of systems, functions, and algorithms as black boxes
® AKA abstractions that consume input and produce output

® \\Ve assume that all side effects are about output (e.g., values in memory,
/0O, etc.)

® But sometimes.... critical information can be revealed in how the output is produced

® E.g., timing... but many others, how loud, how hot... these are artitacts of the
implementation rather than the abstraction

® Side channel: A source of information beyond the output specified by the abstraction

12

Types of Side Channels

Consumption vs. Emission

® Consumption: how much of a resource is being utilized to perform the
operation?

® Time is one example... others?

13

Types of Side Channels

Consumption vs. Emission

® Consumption: how much of a resource is being utilized to perform the
operation?

® Time is one example... others?

® Power, memory, network, etc.

® Emissions: what out-of-band signal is generated in the course of performing
the operation?

® EM radiation, sound, movement, error messages, etc.

LLEE

: " .‘ A
- .'}‘ . n o z .’ s ‘;‘ . y & <3 . ' '.
» : - = 4 :
M. 4 A * » 4 _' ' ' ") :
> . A N & J g
" "" g “ '
I I'E R R 3 :
y p e S O I — ' y st "Ml ATTVEE S NN B, ‘ I - ‘...' ,;0," * o' bj\m{’“ ‘ : :
W ‘ s Wy 3 ' ;
’Q il A "-J .
5 | ? | ., .
» . : d i - ’ ‘
y R B , .

:,..“,;
Consumption vs. Em

e Consumption: how
operation? '

‘V'
& -9

7

® Power, memory, |

® Emissions: what oL

ourse of performing
the operation? |

® EM radiation, so

14

15

How might you read the computer screen from the window?

Figure 2. The basic setting: The monitor
faces away from the window in an attempt to
hide the screen’s content.

From: Compromising Reflections — or — How to Read LCD Monitors Around the Corner

16

Reflections are your friend!

Figure 1. Image taken with a macro lens from short distance; the distance between the eye and the
monitor was reduced for demonstration. Readability is essentially limited by the camera resolution.

From: Compromising Reflections — or — How to Read LCD Monitors Around the Corner

17

Reflections are your friend!

Figure 1. Image taken with a macro lens from short distance; the distance between the eye and the
monitor was reduced for demonstration. Readability is essentiallv limited bv the camera resolution.

=109 D
EFG

HIKLMNOP "

Figure 5. Reflections in a tea pot, taken from a distance of 10m. The 18pt font is readable from the
reflection.

18

The craziest reflection of them all...

Figure 12. Reflections in a 0.5l plastic Coca-Cola bottle, taken from a distance of 5m. Because of the
irregular surface, only parts of the text are readable.

From: Compromising Reflections — or — How to Read LCD Monitors Around the Corner

Side Channel Examples

Tenex password veritication

® Old OS named Tenex; vulnerability was discovered by
Alan Bell in 1974

® Basic software bug was the same... but how to
exploit?

® Tenex offered userspace programs a lot of control
over paging

® Basic idea: split user input password over multiple

memory pages, forcing system to fault it next page
IS not In memory

® System will not tault it the check fails, allowing user to
recover tull password in linear time

19 https://www.sjoerdlangkemper.nl/2016/11/01/tenex-password-bug/

Side Channel Examples

Power as a side channel

g 500w g 4 & 31732 5000Y Stop £ 43 4y

® | et's say there's a cryptographic secret maintained in
nardware

® C a n n eV e r- b e r- e a d . O n | y u S e d (e . g . yo u r‘ p h O ﬂ e) ﬁw’w‘mM’M"]MM'[“'w""“’“’“ﬂw%ll.h.,% | rﬁ. ‘l.M‘u"'?""”'l'[wﬂ"“"*‘“*-"M"*“i"1\l{»”'whih‘*q.*"lu[-ﬂ"k“""{'“"1"'“.'m”““m'fh\"\-a?r'-*ﬂ%"\1.,){“\‘:;'}’%[]]]‘
ki i !
RN ﬂ' “w"’"“ﬂ‘*ff"lwr?’rw-"-'ﬂHr\!,fﬁ'Jw\'ﬂ'Wu"a'. NIMMWW\'

® Simple Power Analysis (SPA)

® Change in power draw can correspond to
underlying values or operations

® Differential Power Analysis (DPA) feake Mens R
High Res]

® Use signal processing techniques to subtract out
noise cause by other activity you aren’t interested in

https://en.wikipedia.org/wiki/Power_analysis

2

Side Channel Examples

Keyboard acoustic emanations

What is the attack the authors want to conduct?

22

Side Channel Examples

Keyboard acoustic emanations

What is the attack the authors want to conduct?

Covertly or overtly record keystrokes

23

Side Channel Examples

Keyboard acoustic emanations

What is the attack the authors want to conduct?

A, A

x

. (((&-))))

1l &

!

Attacker can use
keystrokes to recover
passwords or other
secrets

From: Keyboard Acoustic Emanations Revisited

24

Side Channel Examples
Decrypting RSA keys through sound

-

. ,
| :
‘ i “ .
} X !
]
p = 4 - y
g . ~ - ’u"'

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis

25

Aside: Covert Channels

® Side channels are inadvertent artitfacts of the implementation that can be
analyzed to extract information across a trust boundary

® Covert channels are the same idea, but actually on purpose
® One party is trying to leak information in a way that won't be obvious

® They encode that information into some side channel (e.qg., variation in time,
memory usage, etc.)

® |nformation is extracted on the other end

® These are really hard to implement, but also really hard to protect against.

Rowhammer

27

How does RAM actually work?

Nothing is safe

® |f you load something in memory, how long can you expect it to stay there
for?

28

How does RAM actually work?

Nothing is safe

® |f you load something in memory, how long can you expect it to stay there
for?

® \What happens it the computer gets unplugged or dies?

29

How does RAM actually work?

Nothing is safe

® |f you load something in memory, how long can you expect it to stay there
for?

® \What happens it the computer gets unplugged or dies?

® RAM is what's called volatile memory: data retained only as long as power is
on

® As opposed to persistent (or non-volatile) memory which retains data even
without power (e.g., flash, magnetic disks)

® \Why do we have RAM in the first place, it it's so volatile?

How does RAM actually work?

Nothing is safe

® |f you load something in memory, how long can you expect it to stay there
for?

® \What happens it the computer gets unplugged or dies?

® RAM is what's called volatile memory: data retained only as long as power is
on

® As opposed to persistent (or non-volatile) memory which retains data even
without power (e.g., flash, magnetic disks)

® \Why do we have RAM in the first place, it it's so volatile?

30 ® |t's fast. We like fast.

Two types of RAM

SRAM and DRAM

e Static RAM (SRAM) vs. Dynamic RAM (DRAM)

® SRAM: Retains bit values in memory so long as there is power!
® Typically faster
® | ower density (SRAM doesn’t get so big; requires 6 transistors per bit)
® More expensive
® DRAM: requires a periodic refresh to maintain a stored value
® Refresh happens ~64ms
® Higher capacity

31 ® | ower cost... DRAM is what's in all of our machines

32

How does DRAM work?

DRAM cells are essentially just capacitors. What is a capacitor?

Write “1"

33

How does DRAM work?

DRAM must be refreshed, so how does that work?

Write “1"

34

How does DRAM work?

Every refresh period, all cells are read from and then written to

i —

Write “1" Read / Write

35

How does DRAM work?

What happens it we don't refresh the cell?

i —

Write “1" Read / Write

36

How does DRAM work?

What happens if we don't refresh the cell?

The

Write “1" Read / Write

How is DRAM organized?

Organizing capacitors

® DRAM cells are groups into rows

]

word line

® ~1KB per row —1_

I | transistor

capacitor

» &6 ¢
& ¢
» &6 ¢
&6 ¢

Row Decoder

® All cells in a row are refreshed
together

) ©-6-6-6¢

dhd
Row Buffer

bit line
[

[Column Decoder J

(a) (b)

37 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_tig1_360496423

How is DRAM organized?

Organizing capacitors

® DRAM cells are groups into rows

J

word line
® ~1KB per row - 8
I | transistor g
, 2
® All cells in a row are refreshed l .
= it
together = CapaEtion -
0o Row Buffer
® o read a single bit, we read the - [columnDecoder |
row into a "“"row buffer” and index @ (b)

38 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_tig1_360496423

How is DRAM organized?

Organizing capacitors

® DRAM cells are groups into rows

J

word line

® ~1KB per row —1_

I | transistor

Row Decoder

® All cells in a row are refreshed l
= capacitor
together = -
o I Row Buffer I
® o read a single bit, we read the - [columnDecoder |
row into a “row buffer” and index @ (b)

39 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_tig1_360496423

DRAM reliability

DRAM getting less reliable over time
Recent DRAM Is More Vulnerable

® As DRAM has gotten more ana

A | |
» B Modules

more dense (4GB —> 32GB over o O
roughly same area footprint)... 3 10 SR R *
. o o] e 8 3 ’: I .0|
many issues of reliability 2 10 b .
8 107 5 \
. e 1 @ |
® Graph on right shows errors over g p ;

2008 2009 2010 2011 2012 2013 2014
Module Vintage

All modules from 2012-2013 are vulnerable

time. Why do these errors occur?

~
—

40 https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_tig1_360496423

DRAM reliability

DRAM getting less reliable over time
Recent DRAM Is More Vulnerable

® As DRAM has gotten more and odules = B Modules

more dense (4GB —> 32GB over :?,i oy y
roughly same area footprint)... S 10! I S
many issues of reliability 2 10° N
3%’103 | :
® Graph on right shows errors over : :2: Ly 19
time. Why do these errors occur? N S R Y

2008 2009 2010 2011 2012 2013 2014
Module Vintage

® As rows get closer and closer
All modules from 2012-2013 are vulnerable

together, sending power to a row
has a nontrivial probability of
"leaking” charge to nearby rows,
potentially flipping bits

https://www.researchgate.net/figure/Structure-of-dynamic-random-access-memory-DRAM-DRAM-consists-of-cells-that-hold-one_fig1_360496423

41

Enter: Rowhammer
Make your own bit flips

® Basic idea: induce bit flips in between
refresh periods by hammering memory
lines that sandwich important pages

® |dentify a target row (in this case, the
purple row)

® Sandwich it between two rows you
control (e.g., page in everything else
yourselt, but more clever ways to do
this too)

® Repeatedly read from rows you control
42 (forcing power through the row)

hammer:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y

clflush (X) // flush cache for address
X

clflush (Y)
Y

jmp hammer

// flush cache for address

43

Rowhammer attack model

Threat model

® Attacker code is executing on same
machine as the victim, but with less
privileges

® \When might this happen in practice?

hammer:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address
X
clflush (Y) // flush cache for address
Y
jmp hammer

44

Rowhammer attack model

Threat model

® Attacker code is executing on same
machine as the victim, but with less
privileges

® \When might this happen in practice?

® All the timel
® Userland attacking kernel

® JavaScript attacking browser

® Guest OS on host OS

hammer:
mov (X), %eax
mov (Y), %ebx
clflush (X)

X
clflush (Y)

Y
jmp hammer

// read from address X
// read from address Y
// flush cache for address

// flush cache for address

45

Who cares?

Some bits are important

Exploiting the DRAM
rowhammer bug to gain kernel
privileges

How to cause and exploit
single bit errors

Mark Seaborn and Thomas Dullien

Who cares?

Some bits are important

x86-64 Page Table Entries (PTEs)

e Page table is a 4k page containing array of 512 PTEs
e Each PTE is 64 bits, containing:

63 62 52 51 32
N Available Physical-Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)

Physical-Page Base Address

Figure 5-21.

e Could flip:
“Writable” permission bit (RW): 1 bit — 2% chance
o Physical page number: 20 bits on 4GB system — 31% chance

O

46

P P
AVL |G|A|D|A|C|W|/]|/]|P
T D

4-Kbyte PTE—Long Mode

What do we do about rowhammer?

e ECC memory
® Compute error correcting code on write, check on read
® Significant mitigation to rowhammer attacks, but still, some attacks will work
® Somewhat costly to do this check

® Memory controller limitations on “hammering” or additional adjacent line
refresh

® Memory controller needs to keep state; could have impact

., @ Issue still persists to this day.

Cache Side Channels

What is a CPU cache?

50

What is a CPU cache?

® Main memory is dense (high capacity) ... but slow
® 1 -4 clock cycles for cache reaa
® Hundreds of clock cycles for memory read
® Processors will try to “cache” recently used memory

® Cache typically implemented at SRAM (notably much smaller capacity than
DRAM)

S

Cache Hierarchy

Caches all the way down
® There are multiple layers of caches...

® | 1 (on chip), L2, L3; each increasing in
size put slightly decreasing in speed

® |[fit'snotin L1, L2, or L3, then we go to
DRAM

CPU Core

Reqgisters

L1 Cache (on |
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

52

Cache Hierarchy

Caches all the way down
® There are multiple layers of caches...

® | 1 (on chip), L2, L3; each increasing in
size but slightly decreasing in speed

® [fit'snotin L1, L2, or L3, then we go to
DRAM

® Note the cache is a shared system
resource

® "Just a performance optimization” —>
has no impact on reliability... but it does
change time

CPU Core

Registers

L1 Cache (on |
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

53

Cache Organization
How do caches actually work?

® Cache line

® Unit of cache granularity, e.q., 64
bytes

® Smallest unit of putting something “in
the cache”

® Set associativity
® Cache lines are grouped into sets

® Fach memory address is mapped to a
set of cache lines; (associativity),
reducing potential cache misses
without causing too much eviction

Direct Mapped
Cache Fill

Each location in main memory
can be cached by just one cache
location.

Main Cache
Memory Memory

Index

2-way Associative
Cache Fill

Each location in main memory
can be cached by one of two
cache locations.

Main Cache
Memory Memory

ndex 0

Index

ndex 0, Way 0

ndex 1

ndex 0, Way 1

ndex 2

ndex 1, Way O

ndex 3

ndex 1, Way 1

- | NN BEBITWINIF O

- | NOYOT B IWINIF O

https://en.wikipedia.org/wiki/CPU_cache

54

Cache Side Channel Attacks

® Threat model:
® \We want to protect victim memory

® Attacker and victim are two different execution domains (e.g., processes or
privilege levels) on the same physical system

® Attacker is able to invoke (directly or indirectly) functionality exposed by the
victim

® Sometimes with attacker-supplied parameters

55

Attacker capabilities

® Prime

® Place a known address in the cache. How?

56

Attacker capabilities

® Prime

® Place a known address in the cache. How?

® [vict

® Remove something from the cache. How?

Attacker capabilities

® Prime

® Place a known address in the cache. How?

® Fvict

® Remove something from the cache. How?

® Flush
® Remove a given address from the cache (cf1ush on x86)
® Measure

7 @ |dentify how long it takes to do something

58

Cache Side Channel Attack Strategy

1. Manipulate cache into a known state
2. Make victim run

3. Try to infer what has changed in the cache as a result of victim code running

59

Cache Side Channel Attack Strategy

® Three basic techniques...
® Evict & Time
e Kick stuff out of the cache and see if the victim slows down as a result
® Prime & Probe

® Put stuff in the cache, run the victim and see if accesses are still fast (no
conflict) or slowed down (have been displaced by memory accesses)

® Flush & Reload

® Flush a particular line from the cache, run the victim and see it your access
are still fast as a result

60

Evict & Time

® Run the victim code several times and time it
® (Get a baseline

® Evict (portions of) the cache

® Access conflicting memory locations so previous cache contents are replacea
with recently-accessed data

® Run the victim code again and retime it

® |fitis slower than before, cache lines evicted by the attacker must have been
used by the victim

® \We now know something about the addresses used by victim code

61

Prime & Probe

® Prime the cache

® Access may memory locations (covering all cache lines of interest) so previous
cache contents are replaced with attacker addresses

® Time access to each cache line to establish speed for "in cache” references
® Run victim code
® Attacker retimes access to its own memory locations
® |f any are slower, it means the corresponding cache line was used by the victim

® \We again, know something now about addresses used by the victim

62

Flush & Reload

® Specifically, tor shared memory
® £.g., shared libraries, fork() sharing, deduplication in VMs

® Time memory access to (potentially) shared regions

® Flush specific lines from the cache

® |nvoke victim code

® Retime access to flushed addresses, if still fast, then was used by the victim
® Because we tlushed it, it should be slow, unless the victim reloaded it

® Again, addresses used by the victim.

63

Things to note about these attacks

® The error on any individual measurement is high

® Repeat many times and use central tendency statistics (e.g., medians) to
filter outliers

® Do they... work?

® “Our error-correcting and error-handling high-throughput covert channel
can sustain transmission rates of more than 45 KBps on Amazon EC2.”

Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud

Meltdown

65

What does Meltdown enable?

Meltdown: Reading Kernel Memory from User Space

Moritz Lipp!, Michael Schwarz!, Daniel Gruss!, Thomas Prescher?,
Werner Haas?, Anders Fogh3, Jann Horn®, Stefan Mangardl,
Paul Kocher’, Daniel Genkin®?, Yuval Yarom’, Mike Hamburg8
LGraz University of Technology, >Cyberus Technology GmbH,
3G-Data Advanced Analytics, *Google Project Zero,
> Independent (www.paulkocher.com), ® University of Michigan,
" University of Adelaide & Data61, S Rambus, Cryptography Research Division

66

Recall from last time...

® |n order to avoid context switching for syscalls, kernel virtual memory is
mapped onto every process

® Otherwise, system calls would take torever, lots of context switching, etc.
® Remember isolation guarantees:

® Page table access control ensures kernel pages are only read when
processor register is in privileged mode!

6/

Abstraction vs. Implementation in Architecture
® |nstruction Set Architecture (ISA)

® Defines interface between hardware and software... “in a perfect world”
® Microarchitecture is the implementation of the ISA on a chip

® Oftentimes, there are subtle differences in implementation and interface,
leading to what are called microarchitectural side channel attacks.

638

Abstraction vs. Implementation in Architecture
® |nstruction Set Architecture (ISA)

® Defines interface between hardware and software... “in a perfect world”
® Microarchitecture is the implementation of the ISA on a chip

® Oftentimes, there are subtle differences in implementation and interface,
leading to what are called microarchitectural side channel attacks.

® Meltdown (and Spectre) are such attacks.

Example: Instruction Pipelining | ces

oY 2 3 A 5 6 7
nstr.
. . . No.
® Processors often break up instructions into T m .
: 1
smaller parts so parts can be processed in
He‘ 2 IF EX MEM 6 WB
ara
p 3 IF FID EX | MEM 6 WB
. 4 IF 1D EX | MEM
® |nstructions appear to be executed one at
S IF 1D EX

a time and in order

(IF = Instruction Fetch, ID = Instruction Decode, EX =
: Execute, MEM = Memory access, WB = Register write
® But under the hood, dependencies get ack)

resolved through pipelining effects

In the fourth clock cycle (the green column), the
earliest instruction is in MEM stage, and the latest
Instruction has not yet entered the pipeline.

69 https://en.wikipedia.org/wiki/Instruction_pipelining

/0

Example: Out-of-Order Execution

® Sometimes, instructions can be safely executed out of order
® Avoid unnecessary pipeline stalls

® But, architecturally, it appears instructions are executed in order

/1

Another example: Speculative Execution

® Sometimes control tlow depends on output of an earlier instruction

® E.g., conditional branch, function pointer

® Rather than wait to know for sure which way to go, the processor may speculate
about the direction/target ot a branch

® Guess based on the past
® |f guess is correct, performance is improved

® |f guess is wrong, speculated computation is discarded and everythign is re-
computed using the correct value

® No impact on correctness... so what's the issue?

/2

Microarchitectural side effects can leak
privileged information.

/3

Meltdown

Speculative execution to our downfall

i1f (x < array.length()) {

value = array([x];

74

Meltdown

Speculative execution to our downfall

i1f (x < array.length()) {

value = array|[x];

® Checking array length can take some
time... so processor will speculatively
fetch value

75

Meltdown

Speculative execution to our downfall

i1f (x < array.length()) {

value = array|[x];

value

L1 cache

® Checking array length can take some
time... so processor will speculatively
fetch value

® \\Vill store that value in the cache

Meltdown

Speculative execution to our downfall e Checking array length can take some time...
so processor will speculatively fetch value

if |(x < array.length())| {

e \\Vill store that value in the cache
value = array([x];

® |f x ends up larger than the array length, we
} obviously don’t take the branch

® But... value has been loaded into the
cache

® No privilege checks happen because the

® \What happens if array[x] is protected
L1 cache memory?

76

77

Building blocks of Meltdown

® Out of order instructions that have microarchitectural side effects are called
transient instructions

® Through side channels, we can read arbitrary memory from kernel without
even exploiting any bugs!

/8

Meltdown to read kernel memory

® \What does the following code do?

* (char *) O;

array[0] = O;

/9

Meltdown to read kernel memory

® \What does the following code do?

* (char *) O;

array[0] = O;

® Null pointer dereterence! Should throw an exception right away. Except...

Meltdown to read kernel memory

® \What does the following code do?
* (char *) O;
array[0] = O;

® Null pointer dereference! Should throw an exception right away. Except...

W H O
© o O O
o O O

>

[cycles]

v
S
P
v
)
D,
O
O
<

200

® Somehow, array[0] was cached, and the privilege check doesn’t happen until
0 some time later... uh oh

81

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late
privilege check

char data

= *(char*)O0x£ff£f£f00e0

array|[data * 4096] = O;

Example adapted from Security & Privacy Academy

82

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative

execution + flush & reload + late char data = * (char*)Ox££££00e0

privilege check
array[data * 4096] = O;
® This line reads a byte from an address in

memory and stores it in data (putting
it in cache)

Example adapted from Security & Privacy Academy

83

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative

execution + flush & reload + late char data = * (char*)Oxf£££00e0

privilege check
array[data * 4096] = O;

® This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

® This line uses that byte as an index in a
big array

Example adapted from Security & Privacy Academy

34

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late

o ack char data = *(char*)0xff££f00e0
orivilege chec

array|[data * 4096] = O;

® This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

® This line uses that byte as an index in a
big array

® Sweep over all pages of array

85

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late
privilege check

char data

= *(char*)O0x£ff£f£f00e0

array|[data * 4096] = O;

® This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

® This line uses that byte as an index in a
big array

® Flush + reload all pages of the array

s data = 07?

86

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late
privilege check

char data

= *(char*)O0x£ff£f£f00e0

array|[data * 4096] = O;

® This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

® This line uses that byte as an index in a
big array

® Flush + reload all pages of the array

s data = 17

87

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late
privilege check

char data

= *(char*)O0x£ff£f£f00e0

array|[data * 4096] = O;

® This line reads a byte from an address in
memory and stores it in data (putting
it in cache)

® This line uses that byte as an index in a
big array

® Flush + reload all pages of the array

s data = 27

88

Meltdown — it’s a huge problem

® (Goal: read one byte of kernel memory

® Basic idea: Combine speculative
execution + flush & reload + late

orivilege check Meltdown enables reading
arbitrary kernel memory from any
® This line reads a byte from an address in userland process.
memory and stores it in data (putting it in
cache)

® This line uses that byte as an index in a big
array

S O
o O
o O

>

® Flush + reload all pages of the array

W
)
()

Access time
[cycles]

e |f you do this fast enough... ° >0 B 20 #>0
age

39

Meltdown Bug

® Using out-of-order execution, attacker can read any
data at any address

® Privilege checks for the kernel are sometimes too
slow to stop this

® Kernel memory is leaked

® Entire physical memory is typically also accessible
in kernel space... meaning you can potentially leak
other processes private memory as well

90

Meltdown Demo (embed was not working)

https://www.youtube.com/watch?v=RbHbFkhéeeE

91

What do we do about Meltdown?

® |deas”?

92

What do we do about Meltdown?

® |deas?

® |mmediate software only fix: stop mapping kernel memory pages in user processes
® But this would make programs so slow...
® |nstead, we do something called Kernel Page Table Isolation

® Key idea: Map kernel memory in userspace still, but page everything out unless
you're running in kernel mode

® 5% — 30% slowdown tor most workload

® Newer processes have a microarchitectural fix where the privilege check happens
fast, but many are still vulnerable

94

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

95

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (1 = 0; 1 < 500; 1i++){
array[i] = ‘h’

}
array2[0] = O0;

96

Branch Prediction

® Branch prediction is a feature in CPUs that tries to predict pathways taken to
conduct efficient speculative execution

for (1 = 0; 1 < 500; 1i++){
array[i] = ‘h’

}
array2[0] = O0;

® Branch predictor would be pretty damn sure array[i] is going to be used;
speculatively execute that line instead of the next one

97

Spectre — it gets worse

® Combines cache side channels + branch prediction for arbitrary memory
reading

® Can break the process invariant — e.g., malicious processes can trick the CPU
into loading other process memory into the cache, and leaks that memory
voluntarily

98

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

1f (index < 4)

|

predictor

arr[data[index] * 4096]

99

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

if (index < 4)

|

oredictor

arr[data[index] * 4096]

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 0;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

100

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 1;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

101

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 1;
char* data = “textKEY";

if (index < 4)

N

oredictor

arr[data[index] * 4096]

102

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 2;
char* data = “textKEY";

1f (index < 4)

N

predictor

arr[data[index] * 4096]

103

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 2;
char* data = “textKEY";

if (index < 4)

N

oredictor

arr[data[index] * 4096]

104

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 3;
char* data = “textKEY";

1f (index < 4)

T~

predictor

arr[data[index] * 4096]

105

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 3;
char* data = “textKEY";

if (index < 4)

T~

oredictor

arr[data[index] * 4096]

106

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values
index = 4;
char* data = “textKEY";

1f (index < 4)

T~

predictor

arr[data[index] * 4096]

107

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values Branch prediction will
erroneously place "K"

index = 4; .
in the cache...

char* data = “textKEY”;

if (index < 4)

T~

oredictor

arr[data[index] * 4096] 0

108

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values Branch prediction will
erroneously place "K"

index = 4; .
in the cache...

char* data = “textKEY”;

1f (index < 4) Extract just like you would
in Meltdown (flush + reload)

T~

oredictor

arr[data[index] * 4096] 0

109

Spectre attacks (simplified)

® Goal: Train branch predictor to leak memory values Branch prediction will
erroneously place "K"

index = 4; .
in the cache...

char* data = “textKEY”;

1f (index < 4) Extract just like you would
in Meltdown (flush + reload)

\ game over gg

oredictor

arr[data[index] * 4096] 0

110

What do we do about Spectre?

® |deas”?

111

What do we do about Spectre?

® |deas?

® Admittedly very rough; but good news is it's hard to exploit
® Broad issue about speculation and branch prediction

® Could disable speculation on branches... but htere's a huge performance
impact as a result

® Also can only be done by chip manutacturer
® Selectively insert instructions to stop speculation at sensitive branches

o | FENCE

12 ® All of these are bandaids, not solutions

Sea-change shift in last 8 years

® Computer architects spent the last 20 years optimizing for common use case

® Assumption was that if optimization doesn’t change output then we're all
good

® Sadly, every optimization is now under intense, immense scrutiny

® New microarchitectual side-channel papers are published almost every
conference...

® Hardware vendors and computer architects are retooling to figure out how to
still offer optimizations without huge security hit

e \ (YV)_/ it's an ongoing field

113

My unsolicited 2c on side channel attacks

® Side channels are epicly cool and fun
® They entertain the part of your brain that likes puzzles

® Are they the most important harm / security threat facing people today?
® No. They're niche, hard to execute, and often probabilistic in practice

® But they're worth study... even it to teach us all the ways in which our
assumptions might be flawed :)

114

Next time...

® \We change gears!
® Done with the “low level” parts of the course material
® Moving up the OSlI stack into the Web; web attacks, web detenses, etc.
® \Web will be the focus of PA3

® Thinking ahead to the midterm...

® Application security, systems security, and web security are the main units
we'll cover

115

