CSE127, Computer Security

System Security I: Secure Design, Processes, Kernels, VMs

UCSan Diego

Housekeeping

General course things to know

® PA2 is released, due at 1/29 at 11:59

® Note a two day preextension — this one is hard and my course staft
suggested a little extra time might be appreciated

® Discussion will give good hints and tips

® (et started early (you can't really grind this one, you have to think a lot)

Previously on CSE127...

Application security

® So far we've learned lots of ways to corrupt control flow
® Stack overtlow, pointer subterfuge, format strings, etc.
® Once you corrupt control flow, attacker can run code of their choice

® Either directly (i.e., shellcode in a buffer) or using return-oriented
programming

e Mitigations can make this harder, but don’t fully stop this

® So... you might be feeling a little despondent...

Today's lecture — Systems Security

Learning Objectives

® Understand definitions of privilege, privilege separation, defense in depth,
and why we need these in computer systems

® Think about abstractions as trust boundaries and apply these to memory,
processes, and even OSes themselves

® | earn the basics of VMs and virtualization, and the guarantees of virtual
machines

Secure Design Principles

A hypothetical

Some bad C code

_ _ ® \What does this code do?
int main() {

char *p = NULL; ® \What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash it

} you run this code?

A hypothetical

Some bad C code

_ _ ® What does this code do?
int main() {

char *p = NULL; ® \What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash it

} you run this code?

A hypothetical

Some bad C code

_ _ ® \What does this code do?
int main() {

char *p = NULL; ¢ What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash it

} you run this code?

A hypothetical

Some bad C code

_ _ ® \What does this code do?
int main() {

char *p = NULL; ® \What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash

} if you run this code?

10

Does the whole system crash on a NULL pointer reference?

® No! At least, not on modern systems...
® But back in the 80s/90s... absolutely!
e MS-DOS / IBM DQOS, NULL ref will crash the whole system

o Why?

11

Does the whole system crash on a NULL pointer reference?

® No! At least, not on modern systems...
® But back in the 80s/90s... absolutely!
e MS-DOS / IBM DQOS, NULL ref will crash the whole system

o Why?

® No protection or isolation from the underlying system

® No memory protection (all memory is available to access to all
processes...)

® No protected OS kernel (all processor operations available to programs)

12

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?

13

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?

14

Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job

® \What assumptions does this definition make?

15

Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job

® \What assumptions does this definition make?

® The job must be clearly defined
® Aka... no functions that do 28 things

® \What are some examples of |east privilege?

16

Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job -

CISG
® \What assumptions does this definition make? "

® The job must be clearly defined '.
isure just iﬂ \/‘
ALL the keys! ~N—

not least privilege

® Aka... no functions that do 28 things

® \What are some examples of |east privilege?

® Non-root accounts can't install programs

® Students can view Gradescope but can’t modity Gradescope

https://fractionalciso.com/least-privilege-is-key-to-good-cybersecurity/

17

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?

18

Privilege Separation

® Simple definition: Divide system into different pieces, each with separate
orivileges, requiring multiple different privileges to access sensitive data /
code

® \What are some examples of privilege separation?

19

Privilege Separation

® Simple definition: Divide system into different pieces, each with separate
orivileges, requiring multiple different privileges to access sensitive data /
code

® \What are some examples of privilege separation?

® For a website that uses passwords — main server handles requests (so can
interface with users), passes data to a password server for authentication (so
can only interface with the database)

® Fundamental type of attack: privilege escalation; where an attacker can get
higher privileges than they are allocated

20

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?

21

Complete Mediation

® Simple definition: Check every access that crosses a trust boundary against a
security policy

® Assumes a well defined and checkable security policy!

® \What are some examples of complete mediation?

22

Complete Mediation

® Simple definition: Check every access that crosses a trust boundary against a
security policy

® Assumes a well defined and checkable security policy!

® \What are some examples of complete mediation?

® Bouncers (why?)

o [SA

® Memory accesses (check permissions on every read/write, not just when
you load a program)

https://www.usadojo.com/guardians-of-the-night-bouncers/

23

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?

24

Defense in Depth

® Simple definition: Use more than one security mechanism for protection.

® \What are some examples of defense in depth?

25

Defense in Depth

® Simple definition: Use more than one security mechanism for protection.

® \What are some examples of defense in depth? P———— o
To continue, type the characters you see in the picture. Why?
® Bridges and moats to protect the castle _ 0
) ” V039 MEBS S
The picture contains 8 characters.
® Passwords and CAPTCHASs (why?) N |
aracters:

{ Continue :

Select all images with

26

Concrete Example: Web Browser architecture

® Different processes control different
components (aka least privilege + privilege
separation)

® Browser process controls address bar,
bookmarks, back / forward buttons

® Renderer controls anything where a
website is displayea

® Plugin processes control extensions, etc.

® GPU process handles code strictly for
GPU (and nothing else)

Browser Process Utility Process

https://developer.chrome.com/blog/inside-browser-part

Concrete Example: Web Browser architecture

® Chrome offers site isolation

® Run a separate renderer processes for
each tab / website

000/ —.—. x\
® Run a separate renderer process for <om | [Renderer Process
. . Renderer Proces ~ g’g‘@j}) FE .__
each frame inside ot a webpage 1, o HA mebeom e €9
® \We'll talk more about frames in the Renderer Proces
. .. g@fu .. _-: —r% iframe c.com
we b un I'tl b ey

https://developer.chrome.com/blog/inside-browser-part

28

How does this work in modern OSes?

® \What are some design principles that offer security in modern operating systems?

29

How does this work in modern OSes?

® \What are some design principles that offer security in modern operating systems?

® Process abstraction

® Processes have user UIDs that determine what they're allowed to access on the
system

® Process isolation

® Processes can't interfere with other processes memory (aka, bufter overflow in one
program doesn’t harm another program)

® User/Kernel isolation
® Privileged operations happen in the kernel

® User requests are checked by the kernel against some security policy

Process Trust Boundaries

31

Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?

32

Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?

® [ile access control lists
® Virtual memory

® \What do we trust to manage the isolation of individual processes?

Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?

® [ile ACLs

® Virtual memory

® \What do we trust to manage the isolation of individual processes?

® The OS!

33

34

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

35

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

36

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)

37

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)

® How do you parse this string?

38

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)
® How do you parse this string?
® First character is file type (- for files, d for directory)

® Next is a group of three sets of permissions: owner (rwx), group (rwx) and other (rwx)

39

Understanding octal values

® Octal values tell you the permission levels for files, summed across permissions
® r (read) 4; w (write) 2: x (execute) 1
® So a permission value of 764 means...
® First 7: user who owns file can read/write/execute
® Second 6; group who owns the file can read/write (not execute)
® | ast 4; anyone can read the file

® Change permissions with chmod (change mode); e.g.,

e chmod 777 <filename>

40

How do processes have access to files?

® Permissions in UNIX are granted according to UID

® UID is set by parent process (e.g., if kumarde runs the shell which runs the
program, the program’s UID would be kumarde)

® Special user root has UID O... they can access any file

® Fach file (as we saw earlier) has an Access Control List (ACL); basically the
permissions string that allow programs to read other files

® Side note... everything is a file. Everything. Once you realize that almost all
of CS is just opening and closing files... you're finally ready to graduate

How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

41

42

How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

-rwsr-xr-x 1 root root 03K May 30 2024 /usr/bin/passwd

43

How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

—“rwsr-xr-x 1 root root 63K May 30 2024 /usr/bin/passwd

® Enter: setuid bit
® A program can have a bit called setuid in its permissions

® Each process has three UIDs: real user ID (rUID), effective user ID (eUID), saved user ID
(sUID)

® |f so, caller's EUID is set to the UID of the tile (which is a temporary privilege escalation!)...
super dangerous, but can be safe if you're smart

44

Virtual Memory

® \What is virtual memory?

45

Virtual Memory

® \What is virtual memory?

® Fach process gets its own “virtual address

space,” completely managed by the operating
system

® Fach process thinks it has access to the entire

memory space, as if this is the only process
running on the system

® This is a beautiful way to both multiplex the
resources of the OS (probably how you learnea
about this in 120) but also enforce security
boundaries between processes

o .
Two birds https://c1.statictlickr.com/2/1603/26666393696_48c102e12f_b.jpg

Virtual memory Physical
(per process) memory

How does virtual memory work?

® Memory addresses used by processes are
virtual addresses

® \irtual addresses are mapped by the
operating system into physical addresses,
corresponding to actual storage locations

® The OS does this with an MMU (memory
management unit) on the CPU to conduct
address translation (the mechanism to map
virtual to physical addresses)

46 https://en.wikipedia.org/wiki/Virtual_memory#/media/File:Virtual_memory.svg

47

Ok... but in practice, really, how is it done?

® Page
® Smallest unit of data for memory management in an OS using virtual memory
® Usually 4KB (or multiple thereof) (12-bits)

® Translations happen through a page table, one per process

® Keeps track of mapping between virtual memory for a process and physical
memory address

e Fully mapping all possible virtual addresses to all possible physical addresses
is impossible (would require exabytes ot storage); so we use a multilevel

page table

48

Address Translation

® Fvery memory access a process performs goes through address translation
(mostly)

® [oad, store, instruction fetch
® |n that sense, the MMU does “complete mediation” of memory accesses

® That is super expensivel

® \What kinds of data structure can help us not look stuff up that we might
already know about?

49

Address Translation

® Fvery memory access a process performs goes through address translation
(mostly)

® [oad, store, instruction fetch
® |n that sense, the MMU does “complete mediation” of memory accesses

® That is super expensivel

® \What kinds of data structure can help us not look stuff up that we might
already know about?

® A cachel In this case, the translation lookaside buffer (TLB);

50

Translation Lookaside Buffer

® Small cache of recently translated page addresses (in hardware)
® Before translating a referenced address, the processor checks the TLB
® |dentifies

® Physical page corresponding to the virtual page (or if the page is not in
memory at all)

® |f page mapping allows the mode of access (e.g., r/w/x), then allows
whatever the process wants to do (aka, enforces access control)

S

Wait... not everything is accessible to the process?

® Of course not! Recall DEP? WAX? How does that actually work in practice?

® Page descriptor (in the page table) contains additional access control
information

® read, write, execute permissions
® These are usually low-order bits in the page table entry
® Set by the operating system and/or user programs (mprotect())

® |f a program attempts the wrong mode of access, the processor will generate
a fault and tell the OS to handle it

52

In sum, for processes

® Virtual memory offers clear delineation between process boundaries

® Any interprocess communication is dangerous (and should be highly
considered when developing secure code)

® All of this is handled by the OS; not the process itselt — this is a fundamental
design decision by developers

OS Trust Boundaries

54

Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?

55

Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?

® Secret memory (e.g., passwords)
® Ability to run arbitrary programs
® Ability to download and install programs

® \What's your attack surface?

56

Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?

® Secret memory (e.g., passwords)

® Ability to run arbitrary programs

® Ability to download and install programs
® \What's your attack surface?

® Memory accesses, privileged instructions, system calls and faults, device
accesses... anywhere you're not talking to OS driven code

S7

Operating System Protections

® How does the operating system protect itself from such threats?
® Combination of hardware and software protection

® Hardware for interfaces at the granularity of instructions (e.g., setting the
translation table base register; where the top-level page table is stored)

® Software for interfaces at the granularity of system abstractions

® Users are doing stuft with system calls, file system, etc... how do we
ensure they have access to do what they want?

58

Privilege Levels

® \What does privilege look like at the OS level?
® "Privileged and non-privileged”
® "Kernel mode and User mode”

® “Supervisor and Normal”

59

Privilege Levels

® \What does privilege look like at the OS level?

® "Privileged and non-privileged”

® "Kernel mode and User mode”

® “Supervisor and Normal”

These all mean the same thing.

® Processor is always operating at some privilege level

® Held in a protected system register, varies by architecture

60

Intel Privilege Levels

® 4 rings (only Ring O and Ring 3 are
typically used by OS)

® Ring O is most privileged (kernel
mode)

S

® Ring 3 is least privileged (user mode

® “Nothing is more privileged than the
kernel” — wrong, turns out

® Ring -1 (Hypervisor / Virtualization)

® Ring -2 (System Management Mode)

Ring 3
Ring 2 Least privileged
Ring 1
Ring 0

Kernel

Most privileged
Device drivers
Device drivers
Applications

https://en.wikipedia.org/wiki/Protection_ring

61

Changing Privilege in OSes

® |n general, any process, program, entity can give up their privilege freely
but cannot gain arbitrary privileges

® To enter a more privileged state, a process:
® Prepares arguments, including where they they want to go
® Executes a special instruction that initiates the transfer

® Remember int 0x807? This is a transfer of control... when you call a kernel
function, you are instructing the hardware to change privilege state

® Only a handful of ways for user mode program to enter kernel mode
program... calls are completely media

62

System Calls

® Remember from 120: context switching is costly

® And yet, userland programs needs a lot of help from the OS... (tiles, I/0,
network, etc.)

® Primarily interface with the OS through syscalls; how does this work?

® To make these fast, kernel’s virtual memory space is mapped into every process,
but made inaccessible when in user mode. How?

® More protection bits: Unprivileged (UR, UW, UX) or Privileged (PR, PW, PX);
these are also stored in each page table entry

® \When we say “kernel memory is at high address in x86" — this is what we
mean

63

Kernel Privileges

® Poll: Does the kernel have access to usermode memory?

64

Kernel Privileges

® Poll: Does the kernel have access to usermode memory?

® Yes! Mostly. Some tiner details make this not 100% true, but in general,
kernel can read / write any mapped pages from usermode

® So, kernel has to be super careful to keep track of whether it's working on
kernel data or usermode data

® Many classes of attacks are in usermode and trick the kernel into writing
something from the user into kernel memory, leading to bad outcomes

A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor
and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?

66

A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor

and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?

® Should tail. Why? Because kernel will check protections on bu
the call is coming from usermode, and block the read

f, note that

6/

A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor

and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?

® Should tail. Why? Because kernel will check protections on bu
the call is coming from usermode, and block the read

f, note that

638

Kernel security

® This is hard to get right... so kernel developers have invented highly vetted functions
that do just this

® copy to user () and copy from user ()

® Functions that safely copy data between user and kernel buffers, checking for
appropriate access in between

® These are kind of like bouncers for kernel memory
® Still, you could cause issues...

® How many of you have ever set a variable to something, checked it later, and it's
not what you expect?

® Time of check vs. Time of use vulnerability... even messier with pointers

69

Kernel security

® This is hard to get right... so kernel developers have invented highly vetted functions
that do just this

® copy to user () and copy from user ()

® Functions that safely copy data between user and kernel buffers, checking for
appropriate access in between

® These are kind of like bouncers for kernel memory
® Still, you could cause issues...

® How many of you have ever set a variable to something, checked it later, and it's
not what you expect?

® Time of check vs. Time of use vulnerability... even messier with pointers

/0

In sum, for OSes...

® Separate mechanisms for operating on usermode and kernel data

® Software

® Keep track of usermode vs. kernel mode and be caretul when deciding
what to do (don’t become a confused deputy)

® Hardware

® Processor helps keep track of privilege levels for operations; transition into
different levels of privilege is ultimately set in a protected register (on
intel... other architectures may vary)

Virtualization

/2

Virtual Machines

® \What is a virtual machine?

73

Virtual Machines

® \What is a virtual machine?

® Deepak’s version: “A computer running in
your computer.”

® Oh... but... how...

® Specialized piece of software called a
hypervisor implements VM environment

and provides translations from the guest
OS to the host OS

® VirtualBox, UTM, VMWare... all hypervisors

® The entire cloud is just VMs (~hundreds of
billions of dollar industry)

Hardware (CPU, Memory, NIC, Disk)
Hypervisor (Hyper-V, Xen, ESX Server)

Virtual Hardware Virtual Hardware Virtual Hardware

74

Virtual Machine Protections

® Your hypervisor can support multiple
virtual machines at the same time.
What protections are guaranteed?

® Each virtual OS “thinks” its running
on bare metal... it's the hypervisor's
job to keep that illusion going

® You can think of a hypervisor as an OS
for OSes... and often it needs special
porivileges to do that

® Ring -1 in intel

75

Virtual Machine Details

76

Virtual Machine Details

® \\e won't cover them. You could spend full courses trying to understana
them, and | won't pretend to know all the details.

® Just know...

® There is now hardware support for virtualization since it's so popular (look
into Intel VT-X and see if your chip supports it)

® Some hypervisors can emulate different architectures (it you have an M*
series Mac, this is what's happening for PA1 and PAZ2... bonkers!)

® OSes should be totally protected from one another, ideally, they don't even
know another OS is running on the same baremetal (and it's up to the
hypervisor to prevent that)

77

In sum, for everything

® Operating systems have a lot going on.
® Process isolation
® Hardware support (MMU)
® Provide separate address spaces to different processes
® Control modes of access to memory (i.e., R,W,X)
® User / Kernel Privilege Separation
® Processor privilege modes used to limit access to sensitive instructions
® |nterfaces can cause lots of fun problems
® Virtual machines

® Same idea, but add another layer of isolation

/8

Next time

® Side channels!

® Break the OS protection guarantees through side channels; leaking
information to learn important stuft

® |n particular, Meltdown / Spectre (the most recent, impactful side channels
circa 2018 that destroyed decades of architecture progress)

