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Housekeeping

General course things to know

® PA2 is released, due at 1/29 at 11:59

® Note a two day preextension — this one is hard and my course staft
suggested a little extra time might be appreciated

® Discussion will give good hints and tips

® (et started early (you can't really grind this one, you have to think a lot)



Previously on CSE127...

Application security

® So far we've learned lots of ways to corrupt control flow
® Stack overtlow, pointer subterfuge, format strings, etc.
® Once you corrupt control flow, attacker can run code of their choice

® Either directly (i.e., shellcode in a buffer) or using return-oriented
programming

e Mitigations can make this harder, but don’t fully stop this

® So... you might be feeling a little despondent...



Today's lecture — Systems Security

Learning Objectives

® Understand definitions of privilege, privilege separation, defense in depth,
and why we need these in computer systems

® Think about abstractions as trust boundaries and apply these to memory,
processes, and even OSes themselves

® | earn the basics of VMs and virtualization, and the guarantees of virtual
machines



Secure Design Principles



A hypothetical

Some bad C code

_ _ ® \What does this code do?
int main() {

char *p = NULL; ® \What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash it

} you run this code?
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A hypothetical

Some bad C code

_ _ ® \What does this code do?
int main() {

char *p = NULL; ® \What do you think will happen when this
code runs?

*p = 20;

® Do you expect your entire system to crash

} if you run this code?
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Does the whole system crash on a NULL pointer reference?

® No! At least, not on modern systems...
® But back in the 80s/90s... absolutely!
e MS-DOS / IBM DQOS, NULL ref will crash the whole system

o Why?
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Does the whole system crash on a NULL pointer reference?

® No! At least, not on modern systems...
® But back in the 80s/90s... absolutely!
e MS-DOS / IBM DQOS, NULL ref will crash the whole system

o Why?

® No protection or isolation from the underlying system

® No memory protection (all memory is available to access to all
processes...)

® No protected OS kernel (all processor operations available to programs)
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Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?
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Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?



14

Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job

® \What assumptions does this definition make?
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Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job

® \What assumptions does this definition make?

® The job must be clearly defined
® Aka... no functions that do 28 things

® \What are some examples of |east privilege?
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Principle of Least Privilege

® Simple definition: Only provide as much privilege to a program (or entity,
person, etc.) as is needed to its job -

CISG
® \What assumptions does this definition make? "

® The job must be clearly defined '.
isure just iﬂ \/‘
ALL the keys! ~N—

not least privilege

® Aka... no functions that do 28 things

® \What are some examples of |east privilege?

® Non-root accounts can't install programs

® Students can view Gradescope but can’t modity Gradescope

https://fractionalciso.com/least-privilege-is-key-to-good-cybersecurity/



17

Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?
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Privilege Separation

® Simple definition: Divide system into different pieces, each with separate
orivileges, requiring multiple different privileges to access sensitive data /
code

® \What are some examples of privilege separation?
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Privilege Separation

® Simple definition: Divide system into different pieces, each with separate
orivileges, requiring multiple different privileges to access sensitive data /
code

® \What are some examples of privilege separation?

® For a website that uses passwords — main server handles requests (so can
interface with users), passes data to a password server for authentication (so
can only interface with the database)

® Fundamental type of attack: privilege escalation; where an attacker can get
higher privileges than they are allocated
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Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?
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Complete Mediation

® Simple definition: Check every access that crosses a trust boundary against a
security policy

® Assumes a well defined and checkable security policy!

® \What are some examples of complete mediation?
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Complete Mediation

® Simple definition: Check every access that crosses a trust boundary against a
security policy

® Assumes a well defined and checkable security policy!

® \What are some examples of complete mediation?

® Bouncers (why?)

o [SA

® Memory accesses (check permissions on every read/write, not just when
you load a program)

https://www.usadojo.com/guardians-of-the-night-bouncers/
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Secure System Design Principles

e \With a group, come up with definitions and examples to the following
concepts:

® | east privilege?
® Privilege separation?
® Complete mediation?

® Defense-in-depth?
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Defense in Depth

® Simple definition: Use more than one security mechanism for protection.

® \What are some examples of defense in depth?
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Defense in Depth

® Simple definition: Use more than one security mechanism for protection.

® \What are some examples of defense in depth? P———— o
To continue, type the characters you see in the picture. Why?
® Bridges and moats to protect the castle _ 0
) ” V039 MEBS S
The picture contains 8 characters.
® Passwords and CAPTCHASs (why?) N |
aracters:

{ Continue :

Select all images with
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Concrete Example: Web Browser architecture

® Different processes control different
components (aka least privilege + privilege
separation)

® Browser process controls address bar,
bookmarks, back / forward buttons

® Renderer controls anything where a
website is displayea

® Plugin processes control extensions, etc.

® GPU process handles code strictly for
GPU (and nothing else)

Browser Process Utility Process

https://developer.chrome.com/blog/inside-browser-part



Concrete Example: Web Browser architecture

® Chrome offers site isolation

® Run a separate renderer processes for
each tab / website

000/ —.—. x\
® Run a separate renderer process for <om | [ Renderer Process
. . Renderer Proces ~ g’g‘@j}) FE .__
each frame inside ot a webpage 1, o HA mebeom e €9
® \We'll talk more about frames in the Renderer Proces
. .. g@fu .. _-: —r% iframe c.com
we b un I'tl b ey

https://developer.chrome.com/blog/inside-browser-part
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How does this work in modern OSes?

® \What are some design principles that offer security in modern operating systems?
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How does this work in modern OSes?

® \What are some design principles that offer security in modern operating systems?

® Process abstraction

® Processes have user UIDs that determine what they're allowed to access on the
system

® Process isolation

® Processes can't interfere with other processes memory (aka, bufter overflow in one
program doesn’t harm another program)

® User/Kernel isolation
® Privileged operations happen in the kernel

® User requests are checked by the kernel against some security policy



Process Trust Boundaries
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Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?
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Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?

® [ile access control lists
® Virtual memory

® \What do we trust to manage the isolation of individual processes?




Process Isolation

® The process abstraction is one of isolation; processes are not by detault allowed to talk
to one another

® The process boundary is a trust boundary

® Any inter-process interface is part of the attack surface (including reading / writing
from files!)

® How are individual processes isolated from one another?

® [ile ACLs

® Virtual memory

® \What do we trust to manage the isolation of individual processes?

® The OS!

33



34

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc
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UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?
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UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)
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UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)

® How do you parse this string?



38

UNIX File System

® \What does “1s” actually show you?

$ 1s -1

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

® \\Vhat are these?

® user who owns the file (with a UID) and group who owns the file (with a GID)
® How do you parse this string?
® First character is file type (- for files, d for directory)

® Next is a group of three sets of permissions: owner (rwx), group (rwx) and other (rwx)
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Understanding octal values

® Octal values tell you the permission levels for files, summed across permissions
® r (read) 4; w (write) 2: x (execute) 1
® So a permission value of 764 means...
® First 7: user who owns file can read/write/execute
® Second 6; group who owns the file can read/write (not execute)
® | ast 4; anyone can read the file

® Change permissions with chmod (change mode); e.g.,

e chmod 777 <filename>
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How do processes have access to files?

® Permissions in UNIX are granted according to UID

® UID is set by parent process (e.g., if kumarde runs the shell which runs the
program, the program’s UID would be kumarde)

® Special user root has UID O... they can access any file

® Fach file (as we saw earlier) has an Access Control List (ACL); basically the
permissions string that allow programs to read other files

® Side note... everything is a file. Everything. Once you realize that almost all
of CS is just opening and closing files... you're finally ready to graduate



How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

41
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How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

-rwsr-xr-x 1 root root 03K May 30 2024 /usr/bin/passwd
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How do processes have access to files?

e OK, but... then how does my computer work?
e Consider changing your password using passwd

® passwd needs to modity /etc/passwd, which is a file owned by root... so how do regular
users just use it?

—“rwsr-xr-x 1 root root 63K May 30 2024 /usr/bin/passwd

® Enter: setuid bit
® A program can have a bit called setuid in its permissions

® Each process has three UIDs: real user ID (rUID), effective user ID (eUID), saved user ID
(sUID)

® |f so, caller's EUID is set to the UID of the tile (which is a temporary privilege escalation!)...
super dangerous, but can be safe if you're smart
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Virtual Memory

® \What is virtual memory?
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Virtual Memory

® \What is virtual memory?

® Fach process gets its own “virtual address

space,” completely managed by the operating
system

® Fach process thinks it has access to the entire

memory space, as if this is the only process
running on the system

® This is a beautiful way to both multiplex the
resources of the OS (probably how you learnea
about this in 120) but also enforce security
boundaries between processes

o .
Two birds https://c1.statictlickr.com/2/1603/26666393696_48c102e12f_b.jpg



Virtual memory Physical
(per process) memory

How does virtual memory work?

® Memory addresses used by processes are
virtual addresses

® \irtual addresses are mapped by the
operating system into physical addresses,
corresponding to actual storage locations

® The OS does this with an MMU (memory
management unit) on the CPU to conduct
address translation (the mechanism to map
virtual to physical addresses)

46 https://en.wikipedia.org/wiki/Virtual_memory#/media/File:Virtual_memory.svg
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Ok... but in practice, really, how is it done?

® Page
® Smallest unit of data for memory management in an OS using virtual memory
® Usually 4KB (or multiple thereof) (12-bits)

® Translations happen through a page table, one per process

® Keeps track of mapping between virtual memory for a process and physical
memory address

e Fully mapping all possible virtual addresses to all possible physical addresses
is impossible (would require exabytes ot storage); so we use a multilevel

page table
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Address Translation

® Fvery memory access a process performs goes through address translation
(mostly)

® [ oad, store, instruction fetch
® |n that sense, the MMU does “complete mediation” of memory accesses

® That is super expensivel

® \What kinds of data structure can help us not look stuff up that we might
already know about?
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Address Translation

® Fvery memory access a process performs goes through address translation
(mostly)

® [ oad, store, instruction fetch
® |n that sense, the MMU does “complete mediation” of memory accesses

® That is super expensivel

® \What kinds of data structure can help us not look stuff up that we might
already know about?

® A cachel In this case, the translation lookaside buffer (TLB);
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Translation Lookaside Buffer

® Small cache of recently translated page addresses (in hardware)
® Before translating a referenced address, the processor checks the TLB
® |dentifies

® Physical page corresponding to the virtual page (or if the page is not in
memory at all)

® |f page mapping allows the mode of access (e.g., r/w/x), then allows
whatever the process wants to do (aka, enforces access control)



S

Wait... not everything is accessible to the process?

® Of course not! Recall DEP? WAX? How does that actually work in practice?

® Page descriptor (in the page table) contains additional access control
information

® read, write, execute permissions
® These are usually low-order bits in the page table entry
® Set by the operating system and/or user programs (mprotect())

® |f a program attempts the wrong mode of access, the processor will generate
a fault and tell the OS to handle it
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In sum, for processes

® Virtual memory offers clear delineation between process boundaries

® Any interprocess communication is dangerous (and should be highly
considered when developing secure code)

® All of this is handled by the OS; not the process itselt — this is a fundamental
design decision by developers



OS Trust Boundaries
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Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?
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Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?

® Secret memory (e.g., passwords)
® Ability to run arbitrary programs
® Ability to download and install programs

® \What's your attack surface?
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Operating System Protections

® Now you're protecting the operating system itselt. What are the assets you're
trying to protect?

® Secret memory (e.g., passwords)

® Ability to run arbitrary programs

® Ability to download and install programs
® \What's your attack surface?

® Memory accesses, privileged instructions, system calls and faults, device
accesses... anywhere you're not talking to OS driven code
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Operating System Protections

® How does the operating system protect itself from such threats?
® Combination of hardware and software protection

® Hardware for interfaces at the granularity of instructions (e.g., setting the
translation table base register; where the top-level page table is stored)

® Software for interfaces at the granularity of system abstractions

® Users are doing stuft with system calls, file system, etc... how do we
ensure they have access to do what they want?
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Privilege Levels

® \What does privilege look like at the OS level?
® "Privileged and non-privileged”
® "Kernel mode and User mode”

® “Supervisor and Normal”
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Privilege Levels

® \What does privilege look like at the OS level?

® "Privileged and non-privileged”

® "Kernel mode and User mode”

® “Supervisor and Normal”

These all mean the same thing.

® Processor is always operating at some privilege level

® Held in a protected system register, varies by architecture
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Intel Privilege Levels

® 4 rings (only Ring O and Ring 3 are
typically used by OS)

® Ring O is most privileged (kernel
mode)

S

® Ring 3 is least privileged (user mode

® “Nothing is more privileged than the
kernel” — wrong, turns out

® Ring -1 (Hypervisor / Virtualization)

® Ring -2 (System Management Mode)

Ring 3
Ring 2 Least privileged
Ring 1
Ring 0

Kernel

Most privileged
Device drivers
Device drivers
Applications

https://en.wikipedia.org/wiki/Protection_ring
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Changing Privilege in OSes

® |n general, any process, program, entity can give up their privilege freely
but cannot gain arbitrary privileges

® To enter a more privileged state, a process:
® Prepares arguments, including where they they want to go
® Executes a special instruction that initiates the transfer

® Remember int 0x807? This is a transfer of control... when you call a kernel
function, you are instructing the hardware to change privilege state

® Only a handful of ways for user mode program to enter kernel mode
program... calls are completely media
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System Calls

® Remember from 120: context switching is costly

® And yet, userland programs needs a lot of help from the OS... (tiles, I/0,
network, etc.)

® Primarily interface with the OS through syscalls; how does this work?

® To make these fast, kernel’s virtual memory space is mapped into every process,
but made inaccessible when in user mode. How?

® More protection bits: Unprivileged (UR, UW, UX) or Privileged (PR, PW, PX);
these are also stored in each page table entry

® \When we say “kernel memory is at high address in x86" — this is what we
mean
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Kernel Privileges

® Poll: Does the kernel have access to usermode memory?
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Kernel Privileges

® Poll: Does the kernel have access to usermode memory?

® Yes! Mostly. Some tiner details make this not 100% true, but in general,
kernel can read / write any mapped pages from usermode

® So, kernel has to be super careful to keep track of whether it's working on
kernel data or usermode data

® Many classes of attacks are in usermode and trick the kernel into writing
something from the user into kernel memory, leading to bad outcomes



A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor
and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?
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A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor

and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?

® Should tail. Why? Because kernel will check protections on bu
the call is coming from usermode, and block the read

f, note that
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A simple attack attempt

® read () system call

—

e ssize t read(int fd, void *buf, size t count);

® Basically, reads count bytes from the ftile specitied by the file descriptor

and writes it to buf

® \What happens if an attacker (in usermode) sets buf to point to somewhere in

kernel memory?

® Should tail. Why? Because kernel will check protections on bu
the call is coming from usermode, and block the read

f, note that
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Kernel security

® This is hard to get right... so kernel developers have invented highly vetted functions
that do just this

® copy to user () and copy from user ()

® Functions that safely copy data between user and kernel buffers, checking for
appropriate access in between

® These are kind of like bouncers for kernel memory
® Still, you could cause issues...

® How many of you have ever set a variable to something, checked it later, and it's
not what you expect?

® Time of check vs. Time of use vulnerability... even messier with pointers
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Kernel security

® This is hard to get right... so kernel developers have invented highly vetted functions
that do just this

® copy to user () and copy from user ()

® Functions that safely copy data between user and kernel buffers, checking for
appropriate access in between

® These are kind of like bouncers for kernel memory
® Still, you could cause issues...

® How many of you have ever set a variable to something, checked it later, and it's
not what you expect?

® Time of check vs. Time of use vulnerability... even messier with pointers



/0

In sum, for OSes...

® Separate mechanisms for operating on usermode and kernel data

® Software

® Keep track of usermode vs. kernel mode and be caretul when deciding
what to do (don’t become a confused deputy)

® Hardware

® Processor helps keep track of privilege levels for operations; transition into
different levels of privilege is ultimately set in a protected register (on
intel... other architectures may vary)



Virtualization
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Virtual Machines

® \What is a virtual machine?




73

Virtual Machines

® \What is a virtual machine?

® Deepak’s version: “A computer running in
your computer.”

® Oh... but... how...

® Specialized piece of software called a
hypervisor implements VM environment

and provides translations from the guest
OS to the host OS

® VirtualBox, UTM, VMWare... all hypervisors

® The entire cloud is just VMs (~hundreds of
billions of dollar industry)

Hardware (CPU, Memory, NIC, Disk)
Hypervisor (Hyper-V, Xen, ESX Server)

Virtual Hardware Virtual Hardware Virtual Hardware
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Virtual Machine Protections

® Your hypervisor can support multiple
virtual machines at the same time.
What protections are guaranteed?

® Each virtual OS “thinks” its running
on bare metal... it's the hypervisor's
job to keep that illusion going

® You can think of a hypervisor as an OS
for OSes... and often it needs special
porivileges to do that

® Ring -1 in intel
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Virtual Machine Details
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Virtual Machine Details

® \\e won't cover them. You could spend full courses trying to understana
them, and | won't pretend to know all the details.

® Just know...

® There is now hardware support for virtualization since it's so popular (look
into Intel VT-X and see if your chip supports it)

® Some hypervisors can emulate different architectures (it you have an M*
series Mac, this is what's happening for PA1 and PAZ2... bonkers!)

® OSes should be totally protected from one another, ideally, they don't even
know another OS is running on the same baremetal (and it's up to the
hypervisor to prevent that)
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In sum, for everything

® Operating systems have a lot going on.
® Process isolation
® Hardware support (MMU)
® Provide separate address spaces to different processes
® Control modes of access to memory (i.e., R,W,X)
® User / Kernel Privilege Separation
® Processor privilege modes used to limit access to sensitive instructions
® |nterfaces can cause lots of fun problems
® Virtual machines

® Same idea, but add another layer of isolation
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Next time

® Side channels!

® Break the OS protection guarantees through side channels; leaking
information to learn important stuft

® |n particular, Meltdown / Spectre (the most recent, impactful side channels
circa 2018 that destroyed decades of architecture progress)



