
CSE127, Computer Security
System Security I: Secure Design, Processes, Kernels, VMs



Housekeeping
General course things to know

• PA2 is released, due at 1/29 at 11:59 

• Note a two day preextension — this one is hard and my course staff 
suggested a little extra time might be appreciated 

• Discussion will give good hints and tips 

• Get started early (you can’t really grind this one, you have to think a lot)
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Previously on CSE127… 
Application security

• So far we’ve learned lots of ways to corrupt control flow 

• Stack overflow, pointer subterfuge, format strings, etc. 

• Once you corrupt control flow, attacker can run code of their choice 

• Either directly (i.e., shellcode in a buffer) or using return-oriented 
programming 

• Mitigations can make this harder, but don’t fully stop this 

• So… you might be feeling a little despondent…
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Today’s lecture — Systems Security
Learning Objectives

• Understand definitions of privilege, privilege separation, defense in depth, 
and why we need these in computer systems  

• Think about abstractions as trust boundaries and apply these to memory, 
processes, and even OSes themselves 

• Learn the basics of VMs and virtualization, and the guarantees of virtual 
machines
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Secure Design Principles
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A hypothetical
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Some bad C code

int main() { 

    char *p = NULL; 

    *p = 20; 

}

• What does this code do? 

• What do you think will happen when this 
code runs? 

• Do you expect your entire system to crash if 
you run this code?



A hypothetical

7

Some bad C code

int main() { 

    char *p = NULL; 

    *p = 20; 

}

• What does this code do? 

• What do you think will happen when this 
code runs? 

• Do you expect your entire system to crash if 
you run this code?



A hypothetical

8

Some bad C code

int main() { 

    char *p = NULL; 

    *p = 20; 

}

• What does this code do? 

• What do you think will happen when this 
code runs? 

• Do you expect your entire system to crash if 
you run this code?



A hypothetical
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Some bad C code

int main() { 

    char *p = NULL; 

    *p = 20; 

}

• What does this code do? 

• What do you think will happen when this 
code runs? 

• Do you expect your entire system to crash 
if you run this code?



Does the whole system crash on a NULL pointer reference?
• No! At least, not on modern systems… 

• But back in the 80s/90s… absolutely! 

• MS-DOS / IBM DOS, NULL ref will crash the whole system 

• Why?
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Does the whole system crash on a NULL pointer reference?
• No! At least, not on modern systems… 

• But back in the 80s/90s… absolutely! 

• MS-DOS / IBM DOS, NULL ref will crash the whole system 

• Why? 

• No protection or isolation from the underlying system 

• No memory protection (all memory is available to access to all 
processes…) 

• No protected OS kernel (all processor operations available to programs)
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Secure System Design Principles
• With a group, come up with definitions and examples to the following 

concepts: 

• Least privilege? 

• Privilege separation? 

• Complete mediation? 

• Defense-in-depth?
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Principle of Least Privilege
• Simple definition: Only provide as much privilege to a program (or entity, 

person, etc.) as is needed to its job 

• What assumptions does this definition make?
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Principle of Least Privilege
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• Simple definition: Only provide as much privilege to a program (or entity, 
person, etc.) as is needed to its job 

• What assumptions does this definition make? 

• The job must be clearly defined 

• Aka… no functions that do 28 things 

• What are some examples of least privilege?



Principle of Least Privilege
• Simple definition: Only provide as much privilege to a program (or entity, 

person, etc.) as is needed to its job 

• What assumptions does this definition make? 

• The job must be clearly defined 

• Aka… no functions that do 28 things 

• What are some examples of least privilege? 

• Non-root accounts can’t install programs 

• Students can view Gradescope but can’t modify Gradescope
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https://fractionalciso.com/least-privilege-is-key-to-good-cybersecurity/



Secure System Design Principles
• With a group, come up with definitions and examples to the following 

concepts: 

• Least privilege? 

• Privilege separation? 

• Complete mediation? 

• Defense-in-depth?
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Privilege Separation
• Simple definition: Divide system into different pieces, each with separate 

privileges, requiring multiple different privileges to access sensitive data / 
code 

• What are some examples of privilege separation?
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Privilege Separation
• Simple definition: Divide system into different pieces, each with separate 

privileges, requiring multiple different privileges to access sensitive data / 
code 

• What are some examples of privilege separation? 

• For a website that uses passwords — main server handles requests (so can 
interface with users), passes data to a password server for authentication (so 
can only interface with the database) 

• Fundamental type of attack: privilege escalation; where an attacker can get 
higher privileges than they are allocated
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Secure System Design Principles
• With a group, come up with definitions and examples to the following 

concepts: 

• Least privilege? 

• Privilege separation? 

• Complete mediation? 

• Defense-in-depth?
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Complete Mediation
• Simple definition: Check every access that crosses a trust boundary against a 

security policy 

• Assumes a well defined and checkable security policy!  

• What are some examples of complete mediation?
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Complete Mediation
• Simple definition: Check every access that crosses a trust boundary against a 

security policy 

• Assumes a well defined and checkable security policy!  

• What are some examples of complete mediation? 

• Bouncers (why?) 

• TSA 

• Memory accesses (check permissions on every read/write, not just when 
you load a program)

22 https://www.usadojo.com/guardians-of-the-night-bouncers/



Secure System Design Principles
• With a group, come up with definitions and examples to the following 

concepts: 

• Least privilege? 

• Privilege separation? 

• Complete mediation? 

• Defense-in-depth?
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Defense in Depth
• Simple definition: Use more than one security mechanism for protection. 

• What are some examples of defense in depth?
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Defense in Depth
• Simple definition: Use more than one security mechanism for protection. 

• What are some examples of defense in depth? 

• Bridges and moats to protect the castle 

• Passwords and CAPTCHAs (why?)
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Concrete Example: Web Browser architecture
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https://developer.chrome.com/blog/inside-browser-part1

• Different processes control different 
components (aka least privilege + privilege 
separation) 

• Browser process controls address bar, 
bookmarks, back / forward buttons 

• Renderer controls anything where a 
website is displayed 

• Plugin processes control extensions, etc. 

• GPU process handles code strictly for 
GPU (and nothing else)



Concrete Example: Web Browser architecture
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https://developer.chrome.com/blog/inside-browser-part1

• Chrome offers site isolation 

• Run a separate renderer processes for 
each tab / website 

• Run a separate renderer process for 
each frame inside of a webpage 

• We’ll talk more about frames in the 
web unit!



How does this work in modern OSes?
• What are some design principles that offer security in modern operating systems? 

• Process abstraction 

• Processes have user UIDs that determine what they’re allowed to access on the 
system 

• Process isolation 

• Processes can’t interfere with other processes memory (aka, buffer overflow in one 
program doesn’t harm another program) 

• User/Kernel isolation 

• Privileged operations happen in the kernel 

• User requests are checked by the kernel against some security policy
28
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• What are some design principles that offer security in modern operating systems? 

• Process abstraction 
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Process Trust Boundaries
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Process Isolation
• The process abstraction is one of isolation; processes are not by default allowed to talk 

to one another 

• The process boundary is a trust boundary 

• Any inter-process interface is part of the attack surface (including reading / writing 
from files!) 

• How are individual processes isolated from one another? 

• File ACLs 

• Virtual memory 

• What do we trust to manage the isolation of individual processes? 

• The OS!
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Process Isolation
• The process abstraction is one of isolation; processes are not by default allowed to talk 

to one another 

• The process boundary is a trust boundary 

• Any inter-process interface is part of the attack surface (including reading / writing 
from files!) 

• How are individual processes isolated from one another? 

• File access control lists 

• Virtual memory 

• What do we trust to manage the isolation of individual processes? 

• The OS!
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Process Isolation
• The process abstraction is one of isolation; processes are not by default allowed to talk 

to one another 

• The process boundary is a trust boundary 
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UNIX File System
• What does “ls” actually show you?
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UNIX File System
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UNIX File System
• What does “ls” actually show you? 

• What are these? 

• user who owns the file (with a UID) and group who owns the file (with a GID) 

• How do you parse this string? 

• First character is file type (- for files, d for directory) 

• Next is a group of three sets of permissions: owner (rwx), group (rwx) and other (rwx)
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Understanding octal values
• Octal values tell you the permission levels for files, summed across permissions 

• r (read) 4; w (write) 2; x (execute) 1 

• So a permission value of 764 means… 

• First 7; user who owns file can read/write/execute 

• Second 6; group who owns the file can read/write (not execute) 

• Last 4; anyone can read the file 

• Change permissions with chmod (change mode); e.g., 

• chmod 777 <filename>
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How do processes have access to files?
• Permissions in UNIX are granted according to UID 

• UID is set by parent process (e.g., if kumarde runs the shell which runs the 
program, the program’s UID would be kumarde) 

• Special user root has UID 0… they can access any file 

• Each file (as we saw earlier) has an Access Control List (ACL); basically the 
permissions string that allow programs to read other files 

• Side note… everything is a file. Everything. Once you realize that almost all 
of CS is just opening and closing files… you’re finally ready to graduate

40



How do processes have access to files?
• OK, but… then how does my computer work? 

• Consider changing your password using passwd 

• passwd needs to modify /etc/passwd, which is a file owned by root… so how do regular 
users just use it? 

• Enter: setuid bit  

• A program can have a bit called setuid in its permissions 

• Each process has three UIDs: real user ID (rUID), effective user ID (eUID), saved user ID 
(sUID) 

• If so, caller’s EUID is set to the UID of the file (which is a temporary privilege escalation!)… 
super dangerous, but can be safe if you’re smart 
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How do processes have access to files?
• OK, but… then how does my computer work? 

• Consider changing your password using passwd 

• passwd needs to modify /etc/passwd, which is a file owned by root… so how do regular 
users just use it? 

• Enter: setuid bit  

• A program can have a bit called setuid in its permissions 

• Each process has three UIDs: real user ID (rUID), effective user ID (eUID), saved user ID 
(sUID) 

• If so, caller’s EUID is set to the UID of the file (which is a temporary privilege escalation!)… 
super dangerous, but can be safe if you’re smart 
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Virtual Memory
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• What is virtual memory?



Virtual Memory
• What is virtual memory? 

• Each process gets its own “virtual address 
space,” completely managed by the operating 
system 

• Each process thinks it has access to the entire 
memory space, as if this is the only process 
running on the system 

• This is a beautiful way to both multiplex the 
resources of the OS (probably how you learned 
about this in 120) but also enforce security 
boundaries between processes 

• Two birds 
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How does virtual memory work?
• Memory addresses used by processes are 

virtual addresses 

• Virtual addresses are mapped by the 
operating system into physical addresses, 
corresponding to actual storage locations 

• The OS does this with an MMU (memory 
management unit) on the CPU to conduct 
address translation (the mechanism to map 
virtual to physical addresses)

46 https://en.wikipedia.org/wiki/Virtual_memory#/media/File:Virtual_memory.svg



Ok… but in practice, really, how is it done?
• Page 

• Smallest unit of data for memory management in an OS using virtual memory  

• Usually 4KB (or multiple thereof) (12-bits) 

• Translations happen through a page table, one per process 

• Keeps track of mapping between virtual memory for a process and physical 
memory address 

• Fully mapping all possible virtual addresses to all possible physical addresses 
is impossible (would require exabytes of storage); so we use a multilevel 
page table
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Address Translation
• Every memory access a process performs goes through address translation 

(mostly) 

• Load, store, instruction fetch 

• In that sense, the MMU does “complete mediation” of memory accesses 

• That is super expensive! 

• What kinds of data structure can help us not look stuff up that we might 
already know about?
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Address Translation
• Every memory access a process performs goes through address translation 

(mostly) 

• Load, store, instruction fetch 

• In that sense, the MMU does “complete mediation” of memory accesses 

• That is super expensive! 

• What kinds of data structure can help us not look stuff up that we might 
already know about? 

• A cache! In this case, the translation lookaside buffer (TLB); 
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Translation Lookaside Buffer
• Small cache of recently translated page addresses (in hardware) 

• Before translating a referenced address, the processor checks the TLB 

• Identifies 

• Physical page corresponding to the virtual page (or if the page is not in 
memory at all) 

• If page mapping allows the mode of access (e.g., r/w/x), then allows 
whatever the process wants to do (aka, enforces access control)
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Wait… not everything is accessible to the process?
• Of course not! Recall DEP? W^X? How does that actually work in practice? 

• Page descriptor (in the page table) contains additional access control 
information 

• read, write, execute permissions 

• These are usually low-order bits in the page table entry 

• Set by the operating system and/or user programs (mprotect()) 

• If a program attempts the wrong mode of access, the processor will generate 
a fault and tell the OS to handle it 
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In sum, for processes
• Virtual memory offers clear delineation between process boundaries  

• Any interprocess communication is dangerous (and should be highly 
considered when developing secure code) 

• All of this is handled by the OS; not the process itself — this is a fundamental 
design decision by developers
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OS Trust Boundaries
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Operating System Protections
• Now you’re protecting the operating system itself. What are the assets you’re 

trying to protect?
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Operating System Protections
• Now you’re protecting the operating system itself. What are the assets you’re 

trying to protect? 

• Secret memory (e.g., passwords) 

• Ability to run arbitrary programs 

• Ability to download and install programs 

• What’s your attack surface?
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Operating System Protections
• Now you’re protecting the operating system itself. What are the assets you’re 

trying to protect? 

• Secret memory (e.g., passwords) 

• Ability to run arbitrary programs 

• Ability to download and install programs 

• What’s your attack surface? 

• Memory accesses, privileged instructions, system calls and faults, device 
accesses… anywhere you’re not talking to OS driven code
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Operating System Protections
• How does the operating system protect itself from such threats? 

• Combination of hardware and software protection 

• Hardware for interfaces at the granularity of instructions (e.g., setting the 
translation table base register; where the top-level page table is stored) 

• Software for interfaces at the granularity of system abstractions 

• Users are doing stuff with system calls, file system, etc… how do we 
ensure they have access to do what they want?
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Privilege Levels
• What does privilege look like at the OS level? 

• “Privileged and non-privileged” 

• “Kernel mode and User mode” 

• “Supervisor and Normal”
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Privilege Levels
• What does privilege look like at the OS level? 

• “Privileged and non-privileged” 

• “Kernel mode and User mode” 

• “Supervisor and Normal” 

• Processor is always operating at some privilege level 

• Held in a protected system register, varies by architecture
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Intel Privilege Levels
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https://en.wikipedia.org/wiki/Protection_ring

• 4 rings (only Ring 0 and Ring 3 are 
typically used by OS) 

• Ring 0 is most privileged (kernel 
mode) 

• Ring 3 is least privileged (user mode) 

• “Nothing is more privileged than the 
kernel” — wrong, turns out 

• Ring -1 (Hypervisor / Virtualization) 

• Ring -2 (System Management Mode) 



Changing Privilege in OSes
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• In general, any process, program, entity can give up their privilege freely 
but cannot gain arbitrary privileges 

• To enter a more privileged state, a process: 

• Prepares arguments, including where they they want to go  

• Executes a special instruction that initiates the transfer 

• Remember int 0x80? This is a transfer of control… when you call a kernel 
function, you are instructing the hardware to change privilege state 

• Only a handful of ways for user mode program to enter kernel mode 
program… calls are completely media



System Calls
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• Remember from 120: context switching is costly  

• And yet, userland programs needs a lot of help from the OS… (files, I/O, 
network, etc.) 

• Primarily interface with the OS through syscalls; how does this work? 

• To make these fast, kernel’s virtual memory space is mapped into every process, 
but made inaccessible when in user mode. How? 

• More protection bits: Unprivileged (UR, UW, UX) or Privileged (PR, PW, PX); 
these are also stored in each page table entry 

• When we say “kernel memory is at high address in x86” — this is what we 
mean



Kernel Privileges
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• Poll: Does the kernel have access to usermode memory?



Kernel Privileges
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• Poll: Does the kernel have access to usermode memory? 

• Yes! Mostly. Some finer details make this not 100% true, but in general, 
kernel can read / write any mapped pages from usermode 

• So, kernel has to be super careful to keep track of whether it’s working on 
kernel data or usermode data 

• Many classes of attacks are in usermode and trick the kernel into writing 
something from the user into kernel memory, leading to bad outcomes



A simple attack attempt
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• read() system call 

• ssize_t read(int fd, void *buf, size_t count); 

• Basically, reads count bytes from the file specified by the file descriptor 
and writes it to buf  

• What happens if an attacker (in usermode) sets buf to point to somewhere in 
kernel memory?
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A simple attack attempt
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• read() system call 

• ssize_t read(int fd, void *buf, size_t count); 

• Basically, reads count bytes from the file specified by the file descriptor 
and writes it to buf  

• What happens if an attacker (in usermode) sets buf to point to somewhere in 
kernel memory? 

• Should fail. Why? Because kernel will check protections on buf, note that 
the call is coming from usermode, and block the read



Kernel security
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• This is hard to get right… so kernel developers have invented highly vetted functions 
that do just this 

• copy_to_user() and copy_from_user() 

• Functions that safely copy data between user and kernel buffers, checking for 
appropriate access in between 

• These are kind of like bouncers for kernel memory 

• Still, you could cause issues… 

• How many of you have ever set a variable to something, checked it later, and it’s 
not what you expect? 

• Time of check vs. Time of use vulnerability… even messier with pointers



Kernel security
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In sum, for OSes…
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• Separate mechanisms for operating on usermode and kernel data 

• Software 

• Keep track of usermode vs. kernel mode and be careful when deciding 
what to do (don’t become a confused deputy) 

• Hardware 

• Processor helps keep track of privilege levels for operations; transition into 
different levels of privilege is ultimately set in a protected register (on 
intel… other architectures may vary)



Virtualization

71



Virtual Machines
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• What is a virtual machine? 

• Deepak’s version: “A computer running in 
your computer.” 

• Oh… but… how… 

• Specialized piece of software called a 
hypervisor implements VM environment 
and provides translations from the guest 
OS to the host OS 

• VirtualBox, UTM, VMWare… all hypervisors 

• The entire cloud is just VMs (~hundreds of 
billions of dollar industry)
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Virtual Machine Protections
• Your hypervisor can support multiple 

virtual machines at the same time. 
What protections are guaranteed? 

• Each virtual OS “thinks” its running 
on bare metal… it’s the hypervisor’s 
job to keep that illusion going  

• You can think of a hypervisor as an OS 
for OSes… and often it needs special 
privileges to do that 

• Ring -1 in intel
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Virtual Machine Details
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Virtual Machine Details
• We won’t cover them. You could spend full courses trying to understand 

them, and I won’t pretend to know all the details. 

• Just know… 

• There is now hardware support for virtualization since it’s so popular (look 
into Intel VT-X and see if your chip supports it) 

• Some hypervisors can emulate different architectures (if you have an M* 
series Mac, this is what’s happening for PA1 and PA2… bonkers!) 

• OSes should be totally protected from one another, ideally, they don’t even 
know another OS is running on the same baremetal (and it’s up to the 
hypervisor to prevent that)
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In sum, for everything
• Operating systems have a lot going on. 

• Process isolation 

• Hardware support (MMU) 

• Provide separate address spaces to different processes 

• Control modes of access to memory (i.e., R,W,X) 

• User / Kernel Privilege Separation 

• Processor privilege modes used to limit access to sensitive instructions 

• Interfaces can cause lots of fun problems 

• Virtual machines 

• Same idea, but add another layer of isolation
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Next time
• Side channels! 

• Break the OS protection guarantees through side channels; leaking 
information to learn important stuff 

• In particular, Meltdown / Spectre (the most recent, impactful side channels 
circa 2018 that destroyed decades of architecture progress) 
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