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Housekeeping

General course things to know

® PA1 was due

® Grades are released! Mostly very good, though some non-instruction following

® \We'll be nice this time, but next time, we won't be so nice (expect huge
penalties it you don't follow instructions)

® PA2 is released, due at 1/29 at 11:59

® Note a two day preextension — this one is hard and my course staff suggested a
little extra time might be appreciated

® Discussion will give good hints and tips

® (et started early (you can't really grind this one, you have to think a lot)



More course staff (so, more office hours)

Arul Mathur

Tutor
armathur@ucsd.edu



mailto:armathur@ucsd.edu

Previously on CSE127...

Other control flow vulnerabilities

® \We talked about format string attacks, integer overflow attacks, and what you
can do about them

® Remember: any surface where your attacker can program your weird
machine will lead to weird outcomes!



Today’s lecture — Defenses + Advanced Attacks

Learning Objectives

® Understand how we mitigate buffer overtlow attacks

® Understand the trade-ofts of different mitigations

® Understand how these mitigations can be bypassed (sometimes)

® | earn return-to-libc paradigm; return-oriented programming, why it's hard
to handle and what to do about it

® \We might overtlow into next lecture



Mitigating Software
Vulnerabilties




Defenses and Mitigation
Let's talk defender

® So far, we've been talking about attacks... but cybersecurity is about attacks
and defenses

® Basic definitions:
® \What is a defense?

® \What is a mitigation?
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® \What is a mitigation?



define: defense

® A defense (or countermeasure) is something put in place to protect
unauthorized access or attack of a privileged resource

® Defenses usually come in two flavors

® Proactive defenses (you put something in place to try and prevent broad
classes ot attacks)

® Reactive defenses (you put something in place to try and prevent a specific
attack you've seen recently)

® \What are some defenses against car theft?




define: defense

® A defense (or countermeasure) is something put in place to protect unauthorized
access or attack of a privileged resource

® Defenses usually come in two tlavors

® Proactive defenses (you put something in place to try and prevent broad
classes of attacks)

® Reactive defenses (you put something in place to try and prevent a specific
attack you've seen recently)

® \What are some defenses against car theft?

® Both are needed to secure your system. Why?

10
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Defenses and Mitigation
Let's talk defender

® So far, we've been talking about attacks... but cybersecurity is about attacks
and defenses

® Basic definitions:
® \What is a defense?

® What is a mitigation?
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define: mitigation

® A mitigation is a decision, action, or practice intended to reduce the level of

risk associated with one or more threat events, threat scenarios, or
vulnerabilities (from NIST SP 800-160 Vol. 2 Rev. 1)

® \What's the difference between a defense and a mitigation?



https://doi.org/10.6028/NIST.SP.800-160v2r1
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define: mitigation

® A mitigation is a decision, action, or practice intended to reduce the level of risk

associated with one or more threat events, threat scenarios, or vulnerabilities (from
NIST SP 800-160 Vol. 2 Rev. 1)

L 4

® \What's the difference between a defense and a mitigation?

® Mitigations tend to be more reactive; they can also play at several levels beyona
technical (technical, economic, policy)

® Mitigations will not stop all exploits, but they can make exploit development more
difficult and costly

® | ots of folks throw around words like this interchangeably — worth paying
attention to when one is used over another


https://doi.org/10.6028/NIST.SP.800-160v2r1
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In a perfect world...

® All developers and software engineers would write perfect code

® But sadly, asking developers to not insert vulnerabilities doesn’t really
work

® Even worse, not all vulnerabilities will be discovered prior to release

® So we build defensive systems and mitigations to prevent threats from getting
out of hana
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How to think about defenses...

® Even when we're learning about defenses, you should be thinking like an
attacker

® Challenge assumptions
® Think about how you can circumvent each “solution”
® Recall: Security is a cat-and-mouse game

® Developers introduce new features. Attackers exploit features. Developers
defend those features and build a better system. Attackers adapt to the
countermeasures... (and so it goes...)

® ...and both sides are employed indetinitely...
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OK, back to software vulnerabilities...

® Think back to the attacks we've learned about so far: stack smashing, format
string vulnerabilities, integer overtlow vulnerabilities

® \What kinds of outcomes do we want to prevent?
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OK, back to software vulnerabilities...

® Think back to the attacks we've learned about so far: stack smashing, format
string vulnerabilities, integer overtlow vulnerabilities

® \What kinds of outcomes do we want to prevent?
® Overwriting the return address
® Hijacking the control tlow in any way

® Unauthorized read / write of process memory
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Today’s defenses

® Try to detect overwriting control data (e.g., return address)
® Stack canaries / cookies

® Try to make it difficult to redirect control flow to attacker code
® Memory protection (Data-execution prevention, W"X)

® Address Space Layout Randomization (ASLR)



Stack Canaries
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Stack Canaries

® Basic idea to prevent bufter overflow
attacks

® Detect overwriting of the return address

® Place a special value (called a canary or
cookie) between local variables and the
saved frame pointer

® Check that value betore popping savea
frame pointer and return address from
the stack

® Exception is triggered it the value is not
correctl!
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Caller / Callee with canaries during call

® \What are the responsibilities of the caller?
® Pass arguments, save return address, call new function
® \What is the responsibility of the callee?
® Save old FP, set FP = SP, allocate stack space for...
® Canary value, which is pushed onto the stack

® | ocal storage, which is pushed after canary
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Caller / Callee with canaries during ret

® \What does the callee do when returning?
® Pop local storage

® Pop canary, check if canary matches expected, known value, otherwise throw
exception

® SetSP =FP
® Pop frame pointer
® Pop return address and ret
® \What does the caller do when returning?

® Pop arguments and continue
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overflow.c — canaries

void foo (char* 1inp) {

char bufl[4];
strcpy (bufl, inp);

int main() {

foo (getFromUser()) ;

SPp —»

main

«—FP
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overflow.c — canaries

void foo (char* inp) {

char bufl[4];
strcpy (bufl, inp);

main
int main() {

foo (getFromUser ()) ;

«—FP
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overflow.c — canaries

void foo (char* inp) {

«— [P
char bufl[4]; foo
strcpy (bufl, inp);

}
main

int main() {

foo (getFromUser ()) ;
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overflow.c — canaries

void foo (char* inp) {

foo
char bufl[4];
strcpy (bufl, inp); «—FP
}
main

int main() {

foo (getFromUser ()) ;
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overflow.c — canaries

void foo (char* inp) {

char bufl[4];
strcpy (bufl, inp);

int main() {

foo (getFromUser ()) ;

foo

«—FP

main
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overflow.c — canaries
SP —»

void foo (char* inp) {

char bufl[4];
strcpy (bufl, inp);

} returns 0x41 until return address,
and overwrites return
int main() { //f

foo (getFromUser ()) ;

foo

«—FP

main



29

overflow.c — canaries
SP —»

void foo (char* inp) {

char bufl[4];
strcpy (bufl, inp);

} returns 0x41 until return address,
and overwrites return
int main() { //f

foo (getFromUser ()) ;

foo

«—FP

main
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overflow.c — canaries returning
Sp —

void foo (char* inp) {

char bufl[4];
strcpy (bufl, inp);

int main() {

foo (getFromUser ()) ;

foo

«—FP

main
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overflow.c — canaries returning

void foo (char* inp) {

SP — foo
char bufl[4];
strcpy (bufl, inp); P
}
main

int main() {

foo (getFromUser ()) ;
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overflow.c — canaries returning

pop canary value

1f (canary '= <expected value>) { SP —

goto canary fail;

}

*STACK SMASHING DETECTED! *

foo’s arguments

local variables

foo

«—FP

main
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Why is called a canary...?

Miner's canary |edit]

Mice were used as sentinel species for use in detecting carbon monoxide in British coal
mining from around 1896,!'4%! after the idea had been suggested in 1895 by John Scott
Haldane.['#4] Toxic gases such as carbon monoxide, asphyxiant gases such as carbon
dioxide and explosive gases like methanel'#%! in the mine would affect small warm-blooded
animals before affecting the miners, since their respiratory exchange is more rapid than in
humans. A mouse will be affected by carbon monoxide within a few minutes, while a human
will have an interval of 20 times as long.!'46! Later, canaries were found to be more sensitive
and a more effective indicator as they showed more visible signs of distress. Their use in
mining is documented from around 1900.1'47] The birds were sometimes kept in carriers
which had small oxygen bottles attached to revive them.l14811149]

A canary in a coal mine: “An early warning sign
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Mining foreman R. Thornburg
shows a small cage with a canary used
for testing carbon monoxide gas in
1928.

of impending danger.”



34

Good values for canaries

® \What are some good values for canaries?
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Good values for canaries

® \What are some good values for canaries?

® Canaries tend to include null bytes; force termination of unsafe functions
(called terminator canaries)

® c.g., 0x000AODFF

® \What's the problem with using a fixed canary value?
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Good values for canaries

® \What are some good values for canaries?

® Canaries tend to include null bytes; force termination of unsafe functions
(called terminator canaries)

® c.g., 0x000AODFF

® \What's the problem with using a fixed canary value?
® |f attacker can guess a canary... it's still game over
® Modern systems try to make canaries hard to guess

® Random canaries are great options so long as they remain secret
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When do we add canaries?

® At compile time! Now a common feature of all popular compilers...

® gcc flags to add canaries

e —fstack—-protector
® Functions with character buffers >= ssp-buffer-size (8 bytes default)

® Functions with variable sized alloca() (dynamic stack allocation)
e —fstack—-protector-strong

® Functions with local arrays of any size/type

® Functions that have references to local stack variables
e —fstack-protector-all

e All functions!



Canary Tradeoffs

® Pros
® Simple to implement and deploy
® Can implement mitigation as a compiler pass, so no input from developers is needed

® Cons

® Performance -fstack-protector-strong

func(int, int, char¥*):
pushl $ebp

M * movl tesp, %ebp
® Stack protection has a marginal cost
movl 16 (%ebp), %eax
movl teax, -28(%ebp)
movl $gs:20, %teax
movl teax, -12(%ebp)

No stack protection e

func(int, int, char¥*): subl $8, %esp

pushl %ebp pushl -28(%ebp)

movl %esp, %ebp leal -16(%ebp), %eax
subl $24, %esp pushl feax

movl $-559038737, -12(%ebp) call strcpy

subl $8, %esp addl $16, %esp

pushl 16 (%ebp) nop

leal -16(%ebp), %eax movl -12(%ebp), %eax
pushl eax xorl $gs:20, %eax
call strcpy je .L3

addl $16, %esp call stack chk fail
nop L3:

leave leave

ret ret
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Limitations of Canaries

® \What is the fundamental assumption canaries make about attacks it tries to
protect against?
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Limitations of Canaries

® \What is the fundamental assumption canaries make about attacks it tries to
protect against?

® Impossible to overwrite return address without corrupting the canary.

® |s this always true?
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Limitations of Canaries

® \What is the fundamental assumption canaries make about attacks it tries to
protect against?

® Impossible to overwrite return address without corrupting the canary.
® |s this always true?

® |s it possible to overwrite the canary value with a valid one, even if we don't
know the value a priori?

® \What about non-protected data?

® \What about arbitrary writes (e.g., via printf?)
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Limitations of Canaries

® \What is the fundamental assumption canaries make about attacks it tries to
protect against?

® Impossible to overwrite return address without corrupting the canary.
® |s this always true?

® |s it possible to overwrite the canary value with a valid one, even if we
don’t know the value a priori?

® \What about non-protected data?

® \What about arbitrary writes (e.g., via printf?)
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Learning Canaries through Brute Force

® |f underlying software leaks information about the canary, you can use that to your
advantage

® Canary value is selected at process creation, stays the same throughout the runtime ot
the process

® Consider long running processes... e.g., web servers
® Main server process:
® Establishes listening socket on the network

* fork workers to handle requests; it any workers die, fork a new one

* Worker process:

* Accept connection on listening socket & process request
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

X

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

X

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

X

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

v

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

® And so on...

X

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

® And so on...

X

foo

main
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Long running processes can leak canary values...

® Forked process has same memory
layout and contents as parent...
including canary values

® The "fork on crash” lets us try different
canary values at our wish...

® \\Ve know size of bufter, so fill it with
nonsense

® Try moditying one byte at a time, see
it the forked process crashes

® And so on...

X

foo

main
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Limitations of Canaries

® \What is the fundamental assumption canaries make about attacks it tries to
protect against?

® Impossible to overwrite return address without corrupting the canary.
® |s this always true?

® |s it possible to overwrite the canary value with a valid one, even if we don't
know the value a priori?

® What about non-protected data?

® What about arbitrary writes (e.g., via printf?)



totally_secure.c

0x08049b95 wvo1id evil () {

printf ("evil\n");

ex1t (0) ;
}

int 1 = 42;

vold func (char *str) {

int *ptr = &1i;
int val = 44;
char bufl[4d];

strcpy (but, str);

*ptr = val;

J

int main(int argc,
func (argv|[1l]);
return O;

56 }

char**argv)

{



totally_secure.c

0x08049b95 wvo1id evil () {

printf ("evil\n");

ex1t (0) ;

vold func (char *str) {

int *ptr = &i;

int val = 44;
char bufl[4d];
strcpy (but, str);
*ptr = val;

J

int main(int argc,
func (argv|[1l]);
return O;

57 }

char**argv)

{

Initializes a pointer to |
Creates another val = 44



totally_secure.c

0x08049b95 wvo1id evil () {

printf ("evil\n");

ex1t (0) ;
}

int 1 = 42;

vold func (char *str) {

int *ptr = &1;
int val = 44;
char bufl[4d];

strcpy (but, str);

*ptr = val;

J

int main(int argc,
func (argv[1l]);
return 0O;

58 }

char**argv)

{

makes a vulnerable call to strcpy

What can the attacker overwrite?



totally_secure.c

0x08049b95 wvo1id evil () {
printf ("evil\n");
ex1t (0) ;

}
int 1 = 42;

vold func (char *str) {
int *ptr = &1i;
int val = 44;
char bufl[4d];
strcpy (buf, str);

)

int main (1nt argc, char**argv)
func (argv|[1l]);
return O;

59 }

{

dereferences ptr, sets equal to val

both are in attacker’s control.



totally_secure.c

0x08049b95

60

vold evil () |
printf ("evil\n") ;
ex1t (0) ;
} but

int 1 = 42; val

vold func (char *str) {
int *ptr = &1;
int val = 44;
char buf[4];

strcpy (but, str);
*ptr = val; Oxf£££d4009c

J

int main(int argc, char**argv) {
func (argv[1l]);
return 0O;

buf

44

&1 func

main




totally_secure.c

0x08049p95 wvoid evil () {
printf ("evil\n");
ex1t (0) ;
} buf

int 1 = 42; val
void func (char *str) { func
int *ptr = &1;
int val = 44;
char butf[4];

strcpy (buf, str);

*ptr = val; Oxfff£fd09c main

J

int main(int argc, char**argv) {
func (argv[1l]);
return 0O;




totally_secure.c

0x08049095 wvoi1id evil () {
printf ("evil\n");
ex1t (0) ;

}
int 1 = 42;

vold func (char *str) {
int *ptr = &1i;
int val = 44;
char buf[4d];
strcpy (buf, str);

)

int main (1nt argc, char**argv)
func (argv[1l]);
return O;

62 }

buf

val

Oxfff£f£fd09c

{

func

main



Attacker overwrote return address
without touching canary value!

“Pointer subterfuge” attack
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Canaries are widely used today

® Stack canaries do not protect from non-sequential overwrites

® Stack canaries do not prevent the overwrite, they only attempt to detect when

it happens

® "Reactive mitigation” —> attack has happened; how do we recover from
damage?

® |n spite of limitations, stack canaries still offer significant value for the
performance tradeoff

® Considered essential mitigation on modern systems; 85% desktop binaries

ship with stack canaries (https://www.ndss-symposium.org/wp-content/
uploads/2022-31-paper.pdf)



https://www.ndss-symposium.org/wp-content/uploads/2022-31-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-31-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-31-paper.pdf

Data Execution Prevention
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Data Execution Prevention (DEP)

® Goal: prevent execution of shellcode on the stack

® Modern processes can mark virtual memory pages with permission bits: Read, Write,
and/or eXecute (RWX)

® |dea: Mark stack pages as “nonexecutable” — any attempts to execute from stack
will trigger memory access violation

® Can extend beyond stack too...
® Make all pages either writable or executable, but not both
® Stack + heap are writeable, not executable

® Code is executable, but not writeable

® Known as WAX (Write XOR eXecute)



6/

DEP Tradeoffs

® Pros
® No changes to application software (happens in runtime)
® |ittle / no performance impact
® Cons
® Requires hardware support (MPU, MMU, or SMMU)...
® Might not be possible in low level, cheap embedded devices
® Doesn't work automatically for some programs...

® £ g., self-modifying code, just-in-time compilation, etc.
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Busting DEP

® \What is the core assumption the DEP relies on?
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Busting DEP

® \What is the core assumption the DEP relies on?

® Attacker wants to transter control to something on the stack. Is this always
true?



/0

Busting DEP

® \What is the core assumption the DEP relies on?

® Attacker wants to transter control to something on the stack. Is this always
true?

® No!
® |s there any useful executable code you can repurpose...?
® Recall... parts of 1ibc is loaded in process memory

® Remember execve () ? If we can return control there, we can start any
process...

® Called a return-to-libc attack



/1

Return-to-libc attacks

® Fundamental idea: return control to a call to an executable function,
usually in libc

® But... the stack needs to be set up the right way to work properly

® Core concept: Trick runtime into thinking the ret functions like a call



72

Return-to-libc attacks — function setup

Normal setup

main

«—FP
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Return-to-libc attacks — function setup

Normal setup Setup pre ret

SP —s

main

«—FP

main

«—FP
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Return-to-libc attacks — function setup

Normal setup Setup pre ret

main

«—FP

main

«—FP
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Return-to-libc attacks — function setup

Normal setup Setup pre ret

main main

«— FP
somewhere in libc «— FP



function setup

Setup pre ret

Where are we about to jump to?

somewhere in libc «— FP
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Return-to-libc attacks — function setup

Normal setup Setup pre ret

some
main libc

) _>- o
«—FP

somewhere in libc «— FP




function setup

Setup pre ret

What does call do?

somewhere in libc «— FP



Return-to-libc attacks — function setup

Normal setup Setup pre ret
f execve
some
main libc
func
+«—FP

/9 o o
somewhere in libc — FP



Return-to-libc attacks — function setup

Normal setup Setup pre ret
f execve
+«—FP
some
main libc
func
+«—FP

80

somewhere in libc



Return-to-libc attacks — function setup

Normal setup Setup pre ret
f execve
+«—FP
some
main libc
func
+«—FP

31

somewhere in libc



function setup

Setup pre ret

Core idea of return-to-libc: execve
Attacker uses existing,

executable code to hijack

control flow.

somewhere in libc
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How to handle return-to-libc attacks?

® Remove all code you don’t need!
® |f you don't use execve,don’t load it in process memory
® This can be done at compile time

® But not pertect...

® Some dependencies are really challenging to tind and remove and reduce
functionality

® Fundamental tradeoft between flexibility and security



34

Limitations with return-to-libc attacks
® “Straight line limited”

® Means you can only enter into one libc function after another
® “Removal limited”

® |f you remove libc function that aren’t useful, you can seriously hamper
attackers
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Limitations with return-to-libc attacks
® “Straight line limited”

® Means you can only enter into one libc function after another
® “Removal limited”

® |f you remove libc function that aren’t useful, you can seriously hamper
attackers

® ...turns out... those assumptions are wrong, you don’t even need
functions!
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Return-Oriented Programming

® Key idea: You don't even need function calls!

® All you need are micro sequences of instructions (called gadgets) to mess with control
flow of a program

® This is very possible in x86. Why?

® x86 instructions are ambiguous and dense, so shifting by a single byte often leads to
different strings of instructions

® All you need is ret to chain gadgets together

® Thisis a UCSD paper: https://hovav.net/ucsd/dist/geometry.pdt

® “The geometry of innocent flesh on the bone: return-into-libc without function calls (on
the x86)"


https://hovav.net/ucsd/dist/geometry.pdf
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Return-Oriented Programming

® Goal: make complex shellcode out of existing application code

® Stitch together arbitrary programs out of code “gadgets” already present in the
target binary

® ROP Gadgets: sets of code sequences that end in ret
® \Why ret?

® |t's everywhere (always at the end of every function, plus the c3 byte is
always other functions)

® |t changes control flow (and if you can write on the stack, you can control
where it goes)



$otool -t /bin/ls |grep c3

0000000100000170 39 48 38 7f 07 b8 ff ff ff ff 7d 02 5d 48 83
0000000100000 Cc0 00 00 7d 02 5d 48 83 c6 68 49 83 c0O 68 48 89
0000000100001010 48 83 c7 68 48 83 c6 68 5d e9 6b 35 00 00 55
0000000100001050 b8 91 00 00 00 7d 02 5d 48 83 c6 68 49 83 c0
00000001000010a0 7d 02 5d 48 83 c7 68 48 83 c6 68 5d e9 d8 34
00000001000010e0 48 7f 07 b8 01 00 00 00 7d 02 5d 48 83 c6 68
0000000100001120 7d 02 5d 48 83 c7 68 48 83 c6 68 5d e9 58 34
0000000100001150 b8 01 00 00 00 7d 02 5d 48 83 c6 68 48 83 c1
0000000100001120 7d 02 5d 48 83 c7 68 48 83 c6 68 5d e9 d8 33
00000001000011e0 58 7f @7 b8 91 00 00 00 7d 02 5d 48 83 c6 68
0000000100001870 cO 09 c8 8a 0d ab 3c 00 00 89 81 cb 80 00 00
0000000100001b70 5d d4 89 de e8 57 29 00 00 48 89 48 85 db of
0000000100001.:0 93 39 00 00 21 e9 52 01 00 00 of b7 co 83 f8 ed
0000000100001dd0 48 8d 35 91 2d 00 00 eb 07 48 8d 35 c@ 2d 00
0000000100001e20 36 of b7 56 58 83 fa @7 75 02 5d 44 of b7 c9
0000000100001ecO 00 48 8d 3d e2 2c 00 00 e8 21 26 00 00 48 89
00000001000011f70 34 48 83 02 80 f9 3a 75 19 80 7b fe 3a 75 13
0000000100001fa0 84 c9 75 do 44 89 b5 78 fb ff ff 45 89 e6 80
00000001000023b0 fb ff ff 74 5¢c 8b 78 74 e8 ef 20 00 00 48 89
00000001000023¢0 00 00 48 89 48 85 db of 84 9a 04 00 00 48 89
0000000100002520 66 18 4d 8b 7e 20 41 8b 5e 30 48 63 48 8d 34
0000000100002560 20 49 63 4e 30 41 89 04 8f 41 8b 5e 30 ff 41
0000000100002870 38 05 00 00 5b 41 5¢c 41 5d 41 5e 41 5f 5d 48
0000000100002970 48 8d 3d 9e 22 00 00 48 8d 35 al 22 00 00 48
0000000100002a30 ed 48 83 68 48 89 df e8 4f ob 00 00 89 45
00000001000022a90 of b7 7c 24 04 e8 28 0b 00 00 01 89 d8 48 83
0000000100002220 c4 08 5b 41 5¢c 41 5d 41 5e 41 5f 5d 55 48 89
0000000100002-:0 4f 28 48 8b 46 08 eb 0f 85 c@ 45 8b 4f 38 48 8b
0000000100003200 00 48 83 18 48 81 fb a8 01 00 00 75 84 bb 10
0000000100003260 45 89 fd 4c 8d bd bo f7 ff ff 48 83 18 48 83
00000001000032e0 5b 41 5¢ 41 5d 41 5e 41 5f 5d 48 8d 35 c5 18
0000000100003350 48 83 c4 08 5b 5d 48 8d 3d c6 1b 00 00 31 c@
0000000100003420 c4 70 5b 41 5e 5d e8 a0 of 00 00 55 48 89 e5
0000000100003550 00 89 d8 48 83 c4 08 5b 5d 66 90 7e ff ff ff
00000001000035f0 00 00 00 5d 81 c1 00 60 00 00 81 el 00 f0O 00
0000000100003620 75 06 48 83 10 eb 69 48 8d 7b 68 e8 f7 Qe 00
0000000100003740 5e 41 5f 5d 55 48 89 e5 41 57 41 56 41 55 41
0000000100003930 5¢c fo ff ff 89 48 8d 05 1b 1d 00 00 8b 08 85
0000000100003970 7c 04 85 c9 75 40 41 89 d4 89 48 8d 05 b6 1c
0000000100003990 45 f8 e8 Ob 00 00 42 8d 04 2b 23 45 c8 44 89
00000001000039f0 83 c4 38 5b 41 5¢c 41 5d 41 5e 41 5f 5d 31 ff
0000000100003ac0 00 00 48 89 8a 04 1a 88 45 d6 48 83 ca 01 48
0000000100003b00 f8 80 f9 30 75 36 83 do 41 89 1f 66 bb 01 00
0000000100003b40 9f 80 f9 @7 77 08 83 9f 41 89 1f eb 4e 89 ci
0000000100003b50 80 c1 bf 80 f9 @7 77 12 83 bf 41 89 1f 48 8b
0000000100003bd0 41 5d 41 5e 41 5f 5d 55 48 89 e5 41 56 53 41
0000000100003-30 c6 08 00 00 89 c7 44 89 f6 5b 41 5e 5d e9 e2 08
0000000100003¢c60 31 c@ 48 83 c4 10 5d 55 48 89 e5 e8 e9 08 00
0000000100003c70 90 31 c@ 5d 55 48 89 e5 41 56 53 89 f8 48 8&d
0000000100003d10 5e 5d e9 b5 08 00 00 5b 41 5e 5d 55 48 89 e5
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Return-Oriented Programming

® Basic idea:

® Overwrite saved return address on the stack to point to first gadget, the following word to point
to the second gadget, etc.

® The stack pointer acts as a sort of “instruction pointer” in this new world
® \What can we do with this?
® Turing-complete computation
® | oad and store gadgets
® Arithmetic and logic gadgets
® Control flow gadgets

® This is target/ in PA2; extra credit
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Simple example

What does this piece of assembly do?

mov $5, %edx

]

0x00

Ox ittt

stolen w/ love from UMD



91

Simple example

What does this piece of assembly do?

mov $5, %edx

]

0x00

Ox ittt

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

l

0x00

Ox ittt

mov $5, %edx

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov $5, %edx

What should we place at the first question mark?

O

0x00

Ox ittt

stolen w/ love from UMD
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Simple example

Ox17f: pop %edx
ret

JoeSP

— %eip

mov $5, %edx

What should we place at the first question mark?

%edx

0x00

Ox ittt

stolen w/ love from UMD
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Simple example

— %eip
Ox17f: pop %edx mov $5, %edx

ret

What should we place at the second question mark?
%elsp

0x00 Ox T

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx

0x00

o\ mov $5, %edx
— %eip

What should we place at the second question mark?

Joesp

Ox17f 5 - pedx 3

Ox ittt

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx e
-

What should we place here?
Joesp

- Ox17t 5 ? .

0x00 Ox T

mov $5, %edx

stolen w/ love from UMD
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Simple example

Ox17t: pop %edx

- Ox171

0x00

o - mov $5, %edx
— %eip

The return address of the next gadget!
Joesp

S next! .

Ox ittt

stolen w/ love from UMD
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Address Space Layout
Randomization




Making ROP Hard

® \What are some assumptions made about the location of libc functions that
make ROP possible?
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Making ROP Hard w/ Address Space Layout Randomization

® \What are some assumptions made about the location of libc functions that
make ROP possible?

® |ibcis in a fixed location: not true with Address Space Layout
Randomization (ASLR)

® Basic idea: Add a random offset to stack base

® Make it harder for the attacker to guess location of libc, shellcode, etc.
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ASLR Requirements

® Needs compiler, linker, and loader support

® Side effects
® |ncreasing code size w/ minor performance overhead
® Random number generator dependency
® Potential load time impact for shared library relocation

® But despite this, most modern systems rely on a combo of ASLR, DEP, and
canaries for runtime protection
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Getting around ASLR?

® One mechanism: NOP sled

® Basic idea... if you don't know exactly where the address of the buffer is,
you can pad the bufter with nop (no operation) instructions to increase the
chance of hitting shellcode

® You will have to figure out how to implement this in PA2 :)
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Summary

® How do we protect software?
® Stack canaries: detect overwrite of stack into control data

® DEP / WAX: mark stack and heap pages are non-executable (with hardware support) to
prevent code from executing there

® ASLR: randomize location of libraries, data structures to prevent attacks from knowing where
they are

® Nothing provides pertfect security (everything can be bypassed)
® Theory: make reliable exploits expensive and hard to implement
® Practice: as new bypasses are developed, need to update the idea

® You will have to implement everything we talked about today (except ROP) in your PA2!
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Next time...

® Shift away from application security —> towards system security

® Thinking about the OS as a broader system, other mechanisms of leaking information (e.g., side
channels, covert channels)

® Note — there is a lot in application security we didn’t cover, e.g.,
® Heap smashing
® Control tlow integrity
® Fuzzing, static analysis, dynamic analysis
® Heap spraying
® The list goes on... lots to learn about it you're interested

® \Work on your PA!l It's not easy!
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