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Housekeeping
General course things to know

• PA1 was due 

• Grades are released! Mostly very good, though some non-instruction following 

• We’ll be nice this time, but next time, we won’t be so nice (expect huge 
penalties if you don’t follow instructions) 

• PA2 is released, due at 1/29 at 11:59 

• Note a two day preextension — this one is hard and my course staff suggested a 
little extra time might be appreciated 

• Discussion will give good hints and tips 

• Get started early (you can’t really grind this one, you have to think a lot)
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More course staff (so, more office hours)
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Arul Mathur 
Tutor 

armathur@ucsd.edu

mailto:armathur@ucsd.edu


Previously on CSE127… 
Other control flow vulnerabilities

• We talked about format string attacks, integer overflow attacks, and what you 
can do about them  

• Remember: any surface where your attacker can program your weird 
machine will lead to weird outcomes! 
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Today’s lecture — Defenses + Advanced Attacks
Learning Objectives

• Understand how we mitigate buffer overflow attacks 

• Understand the trade-offs of different mitigations 

• Understand how these mitigations can be bypassed (sometimes) 

• Learn return-to-libc paradigm; return-oriented programming, why it’s hard 
to handle and what to do about it 

• We might overflow into next lecture
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Mitigating Software 
Vulnerabilties
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Defenses and Mitigation

• So far, we’ve been talking about attacks… but cybersecurity is about attacks 
and defenses 

• Basic definitions: 

• What is a defense?  

• What is a mitigation? 

7
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Defenses and Mitigation

• So far, we’ve been talking about attacks… but cybersecurity is about attacks 
and defenses 

• Basic definitions: 

• What is a defense?  

• What is a mitigation? 
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Let’s talk defender



define: defense

• A defense (or countermeasure) is something put in place to protect 
unauthorized access or attack of a privileged resource 

• Defenses usually come in two flavors 

• Proactive defenses (you put something in place to try and prevent broad 
classes of attacks) 

• Reactive defenses (you put something in place to try and prevent a specific 
attack you’ve seen recently) 

• What are some defenses against car theft?
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define: defense

• A defense (or countermeasure) is something put in place to protect unauthorized 
access or attack of a privileged resource 

• Defenses usually come in two flavors 

• Proactive defenses (you put something in place to try and prevent broad 
classes of attacks) 

• Reactive defenses (you put something in place to try and prevent a specific 
attack you’ve seen recently) 

• What are some defenses against car theft? 

• Both are needed to secure your system. Why?
10



Defenses and Mitigation

• So far, we’ve been talking about attacks… but cybersecurity is about attacks 
and defenses 

• Basic definitions: 

• What is a defense?  

• What is a mitigation? 

11
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define: mitigation

• A mitigation is a decision, action, or practice intended to reduce the level of 
risk associated with one or more threat events, threat scenarios, or 
vulnerabilities (from NIST SP 800-160 Vol. 2 Rev. 1) 

• What’s the difference between a defense and a mitigation?
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define: mitigation

• A mitigation is a decision, action, or practice intended to reduce the level of risk 
associated with one or more threat events, threat scenarios, or vulnerabilities (from 
NIST SP 800-160 Vol. 2 Rev. 1) 

• What’s the difference between a defense and a mitigation? 

• Mitigations tend to be more reactive; they can also play at several levels beyond 
technical (technical, economic, policy) 

• Mitigations will not stop all exploits, but they can make exploit development more 
difficult and costly 

• Lots of folks throw around words like this interchangeably — worth paying 
attention to when one is used over another
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In a perfect world…

• All developers and software engineers would write perfect code 

• But sadly, asking developers to not insert vulnerabilities doesn’t really 
work 

• Even worse, not all vulnerabilities will be discovered prior to release 

• So we build defensive systems and mitigations to prevent threats from getting 
out of hand
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How to think about defenses…
• Even when we’re learning about defenses, you should be thinking like an 

attacker 

• Challenge assumptions 

• Think about how you can circumvent each “solution” 

• Recall: Security is a cat-and-mouse game 

• Developers introduce new features. Attackers exploit features. Developers 
defend those features and build a better system. Attackers adapt to the 
countermeasures… (and so it goes…) 

• …and both sides are employed indefinitely…
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OK, back to software vulnerabilities…
• Think back to the attacks we’ve learned about so far: stack smashing, format 

string vulnerabilities, integer overflow vulnerabilities 

• What kinds of outcomes do we want to prevent?
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OK, back to software vulnerabilities…
• Think back to the attacks we’ve learned about so far: stack smashing, format 

string vulnerabilities, integer overflow vulnerabilities 

• What kinds of outcomes do we want to prevent? 

• Overwriting the return address  

• Hijacking the control flow in any way 

• Unauthorized read / write of process memory 

17



Today’s defenses
• Try to detect overwriting control data (e.g., return address) 

• Stack canaries / cookies 

• Try to make it difficult to redirect control flow to attacker code 

• Memory protection (Data-execution prevention, W^X) 

• Address Space Layout Randomization (ASLR)
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Stack Canaries
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Stack Canaries
• Basic idea to prevent buffer overflow 

attacks 

• Detect overwriting of the return address 

• Place a special value (called a canary or 
cookie) between local variables and the 
saved frame pointer 

• Check that value before popping saved 
frame pointer and return address from 
the stack 

• Exception is triggered if the value is not 
correct!
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Caller / Callee with canaries during call

21

• What are the responsibilities of the caller? 

• Pass arguments, save return address, call new function 

• What is the responsibility of the callee? 

• Save old FP, set FP = SP, allocate stack space for… 

• Canary value, which is pushed onto the stack 

• Local storage, which is pushed after canary



Caller / Callee with canaries during ret
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• What does the callee do when returning? 

• Pop local storage 

• Pop canary, check if canary matches expected, known value, otherwise throw 
exception 

• Set SP = FP 

• Pop frame pointer 

• Pop return address and ret 

• What does the caller do when returning? 

• Pop arguments and continue
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void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}
SP FP

main

overflow.c – canaries
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void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries

return address

foo’s arguments

local variables

SP

FP

main
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main’s FP

return address

foo’s arguments

local variables

main

SP FP
foo

overflow.c – canaries

void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}
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canary

main’s FP

return address

foo’s arguments

local variables

main

SP

FP

foo
void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries
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local variables (buf1)

canary

main’s FP

return address

foo’s arguments

local variables

main

SP
void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries

FP

foo
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local variables (buf1)

canary

main’s FP

return address

foo’s arguments

local variables

main

SP
void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries

returns 0x41 until return address,  
and overwrites return

FP

foo
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0x41414141 (buf1)

0x41414141 (canary)

0x41414141 (FP)

<evil return address>

foo’s arguments

local variables

main

SP
void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries

returns 0x41 until return address,  
and overwrites return

FP

foo
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void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries returning
0x41414141 (buf1)

0x41414141 (canary)

0x41414141 (FP)

<evil return address>

foo’s arguments

local variables

main

SP

FP

foo
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void foo (char* inp) { 

    char buf1[4]; 
    strcpy(buf1, inp); 

} 

int main() { 

    foo(getFromUser()); 

}

overflow.c – canaries returning

0x41414141 (canary)

0x41414141 (FP)

<evil return address>

foo’s arguments

local variables

main

SP

FP

foo
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overflow.c – canaries returning

0x41414141 (FP)

<evil return address>

foo’s arguments

local variables

main

SP

pop canary value 

if (canary != <expected_value>){ 

     goto canary_fail; 

} 

*STACK SMASHING DETECTED!*

FP

foo



Why is called a canary…?
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A canary in a coal mine: “An early warning sign of impending danger.”



Good values for canaries
• What are some good values for canaries?
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Good values for canaries
• What are some good values for canaries? 

• Canaries tend to include null bytes; force termination of unsafe functions 
(called terminator canaries) 

• e.g., 0x000A0DFF 

• What’s the problem with using a fixed canary value?
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Good values for canaries
• What are some good values for canaries? 

• Canaries tend to include null bytes; force termination of unsafe functions 
(called terminator canaries) 

• e.g., 0x000A0DFF 

• What’s the problem with using a fixed canary value? 

• If attacker can guess a canary… it’s still game over 

• Modern systems try to make canaries hard to guess 

• Random canaries are great options so long as they remain secret
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When do we add canaries?
• At compile time! Now a common feature of all popular compilers… 

• gcc flags to add canaries 

• -fstack-protector 

• Functions with character buffers >= ssp-buffer-size (8 bytes default) 

• Functions with variable sized alloca() (dynamic stack allocation) 

• -fstack-protector-strong 

• Functions with local arrays of any size/type 

• Functions that have references to local stack variables 

• -fstack-protector-all 

• All functions!
37



Canary Tradeoffs
• Pros 

• Simple to implement and deploy 

• Can implement mitigation as a compiler pass, so no input from developers is needed 

• Cons 

• Performance 

• Stack protection has a marginal cost

38



Limitations of Canaries
• What is the fundamental assumption canaries make about attacks it tries to 

protect against?
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Limitations of Canaries
• What is the fundamental assumption canaries make about attacks it tries to 

protect against? 

• Impossible to overwrite return address without corrupting the canary. 

• Is this always true?
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Limitations of Canaries
• What is the fundamental assumption canaries make about attacks it tries to 

protect against? 

• Impossible to overwrite return address without corrupting the canary. 

• Is this always true? 

• Is it possible to overwrite the canary value with a valid one, even if we don’t 
know the value a priori? 

• What about non-protected data? 

• What about arbitrary writes (e.g., via printf?)
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Limitations of Canaries
• What is the fundamental assumption canaries make about attacks it tries to 

protect against? 

• Impossible to overwrite return address without corrupting the canary. 

• Is this always true? 

• Is it possible to overwrite the canary value with a valid one, even if we 
don’t know the value a priori? 

• What about non-protected data? 

• What about arbitrary writes (e.g., via printf?)
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Learning Canaries through Brute Force
• If underlying software leaks information about the canary, you can use that to your 

advantage 

• Canary value is selected at process creation, stays the same throughout the runtime of 
the process 

• Consider long running processes… e.g., web servers 

• Main server process: 

• Establishes listening socket on the network 

• fork workers to handle requests; if any workers die, fork a new one 

• Worker process: 

• Accept connection on listening socket & process request
43



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish…
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local variables (buf1)

canary

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish…
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local variables (buf1)

0xbadcaffe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense

46

0x41414141

0xbadcaffe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes
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0x41414141

0xbadcaffe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes
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0x41414141

0xbadcaf01

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes
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0x41414141

0xbadcaf02

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes
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0x41414141

0xbadcaf03

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes
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0x41414141

0xbadcaffe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes 

• And so on…
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0x41414141

0xbadc01fe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes 

• And so on…
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0x41414141

0xbadc02fe

main’s FP

return address

foo’s arguments

local variables

main

foo



Long running processes can leak canary values…
• Forked process has same memory 

layout and contents as parent… 
including canary values 

• The “fork on crash” lets us try different 
canary values at our wish… 

• We know size of buffer, so fill it with 
nonsense 

• Try modifying one byte at a time, see 
if the forked process crashes 

• And so on…
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0xbadcaffe

main’s FP

return address

foo’s arguments

local variables

main

foo



Limitations of Canaries
• What is the fundamental assumption canaries make about attacks it tries to 

protect against? 

• Impossible to overwrite return address without corrupting the canary. 

• Is this always true? 

• Is it possible to overwrite the canary value with a valid one, even if we don’t 
know the value a priori? 

• What about non-protected data? 

• What about arbitrary writes (e.g., via printf?)
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

Initializes a pointer to i 
Creates another val = 44
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

makes a vulnerable call to strcpy

What can the attacker overwrite?
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

dereferences ptr, sets equal to val
both are in attacker’s control.
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

buf

44

&i

canary

main’s FP

return address

foo’s arguments

local variables

main

func

0xffffd009c

ptr

val

buf
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

0x41414141

0x08049b95

0xffffd09c

canary

main’s FP

return address

foo’s arguments

local variables

main

func

0xffffd09c

ptr

val

buf
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

0x41414141

0x08049b95

0xffffd09c

canary

main’s FP

0x08049b95

foo’s arguments

local variables

main

func

0xffffd09c

ptr

val

buf
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totally_secure.c
void evil() { 
    printf("evil\n"); 
    exit(0); 
} 

int i = 42; 

void func(char *str) { 
    int *ptr = &i; 
    int val = 44; 
    char buf[4]; 
    strcpy(buf, str); 
    *ptr = val; 
} 

int main(int argc, char**argv) { 
    func(argv[1]); 
    return 0; 
} 

0x08049b95

0x41414141

0x08049b95

0xffffd09c

canary

main’s FP

0x08049b95

foo’s arguments

local variables

main

func

0xffffd09c

ptr

val

buf

Attacker overwrote return address 
without touching canary value! 

“Pointer subterfuge” attack



Canaries are widely used today
• Stack canaries do not protect from non-sequential overwrites 

• Stack canaries do not prevent the overwrite, they only attempt to detect when 
it happens 

• “Reactive mitigation” —> attack has happened; how do we recover from 
damage? 

• In spite of limitations, stack canaries still offer significant value for the 
performance tradeoff 

• Considered essential mitigation on modern systems; 85% desktop binaries 
ship with stack canaries (https://www.ndss-symposium.org/wp-content/
uploads/2022-31-paper.pdf)
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Data Execution Prevention
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Data Execution Prevention (DEP)
• Goal: prevent execution of shellcode on the stack 

• Modern processes can mark virtual memory pages with permission bits: Read, Write, 
and/or eXecute (RWX) 

• Idea: Mark stack pages as “nonexecutable” — any attempts to execute from stack 
will trigger memory access violation 

• Can extend beyond stack too… 

• Make all pages either writable or executable, but not both 

• Stack + heap are writeable, not executable 

• Code is executable, but not writeable 

• Known as W^X (Write XOR eXecute)
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DEP Tradeoffs
• Pros 

• No changes to application software (happens in runtime) 

• Little / no performance impact 

• Cons 

• Requires hardware support (MPU, MMU, or SMMU)… 

• Might not be possible in low level, cheap embedded devices 

• Doesn’t work automatically for some programs… 

• E.g., self-modifying code, just-in-time compilation, etc.
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Busting DEP
• What is the core assumption the DEP relies on?
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Busting DEP
• What is the core assumption the DEP relies on? 

• Attacker wants to transfer control to something on the stack. Is this always 
true?
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Busting DEP
• What is the core assumption the DEP relies on? 

• Attacker wants to transfer control to something on the stack. Is this always 
true? 

• No!  

• Is there any useful executable code you can repurpose…? 

• Recall… parts of libc is loaded in process memory 

• Remember execve()? If we can return control there, we can start any 
process… 

• Called a return-to-libc attack
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Return-to-libc attacks
• Fundamental idea: return control to a call to an executable function, 

usually in libc 

• But… the stack needs to be set up the right way to work properly 

• Core concept: Trick runtime into thinking the ret functions like a call

71
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SP

FP

main

f

Normal setup

buf

old fp

return address

local variables

Return-to-libc attacks — function setup



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP

FP

main

f
0x41414141

somewhere in libc (old FP)

address of call execve

arg to execve

SP

Normal setup



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP

FP

main

f

somewhere in libc (old FP)

address of call execve

arg to execve

SP

Normal setup



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP

FP

main

f

address of call execve

arg to execve

somewhere in libc

SP

Normal setup



Return-to-libc attacks — function setup
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buf

old fp

return address

f arguments

local variables

SP

FP

main

f

Normal setup pre call Setup pre ret

SP

FP

main

f

address of call execve

arg to execve

somewhere in libc

Where are we about to jump to?



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP

FP

some  
libc 
func

arg to execve

somewhere in libc

SP

Normal setup



Return-to-libc attacks — function setup
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buf

old fp

return address

f arguments

local variables

SP

FP

main

f

Normal setup pre call Setup pre ret

SP

FP

some  
libc 
func

arg to execve

somewhere in libc

What does call do?



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP

FP

execve

push %eip (return address)

arg to execve

somewhere in libc

some  
libc 
func

SP

Normal setup



Return-to-libc attacks — function setup
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buf

old fp

return address

local variables

FP

main

f

Setup pre ret

SP FP

execve
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Return-to-libc attacks — function setup
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Return-to-libc attacks — function setup
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buf

old fp

return address

f arguments

local variables

SP

FP

main

f

Normal setup pre call Setup pre ret

SP

execve

push %eip (return address)

/bin/sh

somewhere in libc

some  
libc 
func

FP

Core idea of return-to-libc: 
Attacker uses existing,  
executable code to hijack  
control flow.



How to handle return-to-libc attacks?
• Remove all code you don’t need! 

• If you don’t use execve,don’t load it in process memory 

• This can be done at compile time 

• But not perfect… 

• Some dependencies are really challenging to find and remove and reduce 
functionality 

• Fundamental tradeoff between flexibility and security
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Limitations with return-to-libc attacks
• “Straight line limited” 

• Means you can only enter into one libc function after another 

• “Removal limited” 

• If you remove libc function that aren’t useful, you can seriously hamper 
attackers
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Limitations with return-to-libc attacks
• “Straight line limited” 

• Means you can only enter into one libc function after another 

• “Removal limited” 

• If you remove libc function that aren’t useful, you can seriously hamper 
attackers 

• …turns out… those assumptions are wrong, you don’t even need 
functions!
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Return-Oriented Programming
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• Key idea: You don’t even need function calls!  

• All you need are micro sequences of instructions (called gadgets) to mess with control 
flow of a program 

• This is very possible in x86. Why? 

• x86 instructions are ambiguous and dense, so shifting by a single byte often leads to 
different strings of instructions 

• All you need is ret to chain gadgets together 

• This is a UCSD paper: https://hovav.net/ucsd/dist/geometry.pdf 

• “The geometry of innocent flesh on the bone: return-into-libc without function calls (on 
the x86)”

https://hovav.net/ucsd/dist/geometry.pdf


Return-Oriented Programming
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• Goal: make complex shellcode out of existing application code 

• Stitch together arbitrary programs out of code “gadgets” already present in the 
target binary 

• ROP Gadgets: sets of code sequences that end in ret 

• Why ret? 

• It’s everywhere (always at the end of every function, plus the c3 byte is 
always other functions) 

• It changes control flow (and if you can write on the stack, you can control 
where it goes)
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Return-Oriented Programming
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• Basic idea: 

• Overwrite saved return address on the stack to point to first gadget, the following word to point 
to the second gadget, etc. 

• The stack pointer acts as a sort of “instruction pointer” in this new world 

• What can we do with this? 

• Turing-complete computation 

• Load and store gadgets 

• Arithmetic and logic gadgets 

• Control flow gadgets 

• This is target7 in PA2; extra credit



Simple example
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0x00 0xffffffff

%edx

What does this piece of assembly do?

stolen w/ love from UMD

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx 5

What does this piece of assembly do?

stolen w/ love from UMD

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… ? ?

%esp
What should we place at the first question mark?

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the first question mark?

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx
.text

0x17f: pop %edx 
           ret

(ret)
%eip

stolen w/ love from UMD

… 0x17f ?

%esp
What should we place at the second question mark?

mov $5, %edx



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place at the second question mark?

mov $5, %edx
%eip



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)

stolen w/ love from UMD

… 0x17f 5

%esp
What should we place here?

?

mov $5, %edx
%eip



Simple example
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0x00 0xffffffff

%edx 5
.text

0x17f: pop %edx 
           ret

(ret)

stolen w/ love from UMD

… 0x17f 5

%esp
The return address of the next gadget!

next!

mov $5, %edx
%eip
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Address Space Layout 
Randomization
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Making ROP Hard
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• What are some assumptions made about the location of libc functions that 
make ROP possible? 



Making ROP Hard w/ Address Space Layout Randomization
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• What are some assumptions made about the location of libc functions that 
make ROP possible?  

• libc is in a fixed location: not true with Address Space Layout 
Randomization (ASLR) 

• Basic idea: Add a random offset to stack base 

• Make it harder for the attacker to guess location of libc, shellcode, etc.



ASLR Requirements

103

• Needs compiler, linker, and loader support 

• Side effects 

• Increasing code size w/ minor performance overhead 

• Random number generator dependency 

• Potential load time impact for shared library relocation 

• But despite this, most modern systems rely on a combo of ASLR, DEP, and 
canaries for runtime protection



Getting around ASLR?
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• One mechanism: NOP sled 

• Basic idea… if you don’t know exactly where the address of the buffer is, 
you can pad the buffer with nop (no operation) instructions to increase the 
chance of hitting shellcode 

• You will have to figure out how to implement this in PA2 :) 



Summary
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• How do we protect software? 

• Stack canaries: detect overwrite of stack into control data 

• DEP / W^X: mark stack and heap pages are non-executable (with hardware support) to 
prevent code from executing there 

• ASLR: randomize location of libraries, data structures to prevent attacks from knowing where 
they are 

• Nothing provides perfect security (everything can be bypassed) 

• Theory: make reliable exploits expensive and hard to implement 

• Practice: as new bypasses are developed, need to update the idea 

• You will have to implement everything we talked about today (except ROP) in your PA2! 



Next time…
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• Shift away from application security —> towards system security 

• Thinking about the OS as a broader system, other mechanisms of leaking information (e.g., side 
channels, covert channels) 

• Note — there is a lot in application security we didn’t cover, e.g., 

• Heap smashing 

• Control flow integrity 

• Fuzzing, static analysis, dynamic analysis 

• Heap spraying  

• The list goes on… lots to learn about if you’re interested 

• Work on your PA! It’s not easy! 


