CSE127, Computer Security

Control tlow vulnerabilities continued: format strings, integer overtlow

UCSan Diego

Housekeeping

General course things to know

® PA1 due TONIGHT by 1/15 at 11:59
® Good luck!

® Do not forget to submit your Al attestation!

® Due 1/16 at 11:59

e #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/71475/quizzes/
238979, reminder to do this!

® PA2 releases Friday at midnight, due 1/27 at 11:59

https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979

Previously on CSE127...

Buffer overflows!

® \We talked about software exploits, control
flow, and bufter overflows on stack...

® Mixing of code / data in the runtime allows
for all kinds ot “weird” behavior, crashing
programs, at worst, overwriting return
address....

0

0

0

0

0

A

"excessive"— A

X

C

e

S

Addressing buffer overflows

® Best way to avoid these bugs is to not have them in the first place

® |f you can, avoid C/C++ for systems programming. Use a memory-safe language
instead (Rust, Go)

® Train developers to understand these bugs and their ramifications (can only really
get you so ftar)

® Finding bugs is a must

® Manual code review, static analysis, fuzzing, etc., — this is a whole subfield of
computer security

® Or... we can make the bugs harder to exploit

® More on this in one lecture (next time: AppSec defenses)

Today'’s lecture — More software vulns

Learning Objectives
® Understand variadic functions in C

® | earn how format strings really work, and how you can exploit format strings
(and printf) to read and write arbitrarily on the stack

® Understand the basic concepts of integer overtlows, what we can do with
them, and why they matter

Format String Vulnerabilities

printf

® \What does the following code do?

printf (“Hello world!”) ;

printf

® \What does the following code do?

printf (“Hello world!”) ;
® \What about this?

printf (“%s”, “Hello world!”);

printf

® \What does the following code do?

printf (“Hello world!”) ;
® \What about this?

printf (“%s”, “Hello world!”);

® \What about this?

printf (“Hello world!%s”) ;

printf API

e printf (“"Diagnostic number: %d, message: %s\n”, 7, buf)

® "|f format includes format specifiers (subsequences beginning with %), the
additional arguments following format are formatted and inserted in the
resulting string replacing their respective specitiers.”

® A format specifier follows this prototype:

e 3 flags] [width] [.precision] [length]specifier

10

11

printf API

s[flags] [width] [.precision] [length]specifiler

® Flags
® - | eft-justify within the given tield width
® + Precede the result with a plus or minus sign

® 0 Left-pads the number with zeroes (0) instead of spaces when padding is

specified

12

prlntf API

"lags] [width] [.precision] [length]specifier

e \Width

® <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

prlntf API

"lags] [width] [.precision] [length]specifier

e \Width

® <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

® \What will the following print?

printf (\\O 4s// \\H//) ;

prlntf API

"lags] [width] [.precision] [length]specifier

e \Width

® <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

® \What will the following print?

printf (\\O 4s// \\H//) ;

“<space><space><space>H"”

15

prlntf API

"lags] [width] [.precision] [length]specifier

® Precision

® .<number> — for integer specifiers, precision specifies the minimum
number of digits to be written; if value is shorter than number, pad with
zeroes

® For s, maximum number of characters to be printed, default is print until
ending null character is encountered

® \What will the following print?

printf ('3%.3s”, “Hello”);

16

prlntf API

"lags] [width] [.precision] [length] specifier

® | ength

® Modifies the length of the data type provided (doing conversions if
necessary... more on this later)

® h: char
* hh: short
e |: long

e |1: long long

17

printf API continued

An introduction to variadic functions

int printf (const char *format,

® How many arguments does printf take?

18

printf API continued

An introduction to variadic functions

int printf (const char *format, ...)

® How many arguments does printf take?

® |t depends on you!

® C supports functions with a variable number of arguments, called variadic
functions

19

Variadic functions

How do we implement them?

® Question: If the number of arguments is not pre-determined for variadic
functions, then how does the called function know how many were passed
in?

20

Variadic functions

How do we implement them?

® Question: If the number of arguments is not pre-determined for variadic

functions, then how does the called function know how many were passed
in?

® printf works by parsing the format string during runtime, and keeping track
of necessary stack variables independently

va_list

Defined in header <stdarg.h>
/* unspecified */ va list;

va list is a complete object type suitable for holding the information needed by the macros va start, va copy,
va arg, and va end.

If a va list instance is created, passed to another function, and used via va arg in that function, then any subsequent
use in the calling function should be preceded by a call to va end.

It is legal to pass a pointer to a va list object to another function and then use that object after the function returns.

Simple printf implementation

int printf (const char* format, ...) {
int 1; char c¢; char *s; double d;
va list ap; /* Declare an "argument pointer" to a variable argument list */
va start(ap, format); /* Iniitalize argument pointer using last known argument*/

for (char* p = format, *p != "\0', p++) {
1f (*p == 'S5") |
switch (*++p)

case 'd':
1 = va arg(ap, 1int),; break;

case 's':
s = va arg(ap, char*); break;

case 'c¢':
c = va arg(ap, char); break;

Simple printf implementation

int printf (const char* format, ...) {
int 1; char c¢c; char *s; double d;
va list ap; /* Declare an "argument pointer" to a variable argument list */

va start(ap, format); /* Iniitalize argument pointer using last known argument*/

for (char* p = format, *p != "\0', p++) {
if (*p == '%") { , ,
switch (*++p) |{ orintf keeps an “argument pointer,”

case A | sort of like an internal stack pointer...
1 = va arg(ap, 1nt); break;

case 's':
s = va arg(ap, char*); break;

case 'c':
c = va arg(ap, char); break;

22

23

Simple printf implementation

int printf (const char* format,
char c¢; char *s;
/* Declare an "argument pointer" to a variable argument list */
/* Iniitalize argument pointer using last known argument*/

int

va list ap;

va start (ap, format):;
for (char* p = format, *p != '\0',
1f (*p == '%") {

1;

switch (*++p)
'd':

case

cCase

case

1

1

S

I Q

va arg(ap,

T .

va arg(ap,

T .

va arg(ap,

..)
double d;

{

pt+) Ao

int); break;

char~*) ;

char) ;

break;

break;

Function parses out arguments based

on the format string itself

printf on the stack

int main(void) {

printf ("Numbers: 3d,3d”, 5, 6);

return 0;

24

4

Main’s frame... so far

main

printf on the stack

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

25

printf on the stack

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

26

printf on the stack

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

27

printf on the stack

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

28

printf on the stack

printf

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

29

printf on the stack

printf

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

main

30

31

printf on the stack

int main(void) {

printf (“Numbers: %d,%d”, 5, 6);

return 0;

printf

main

32

printf on the stack

int main(void) {

printf (“Numbers: %d4,%d”, 5, 6);
return 0;

After calling va_start, ap is initializea

to right after the format string and reads
arguments defined by format string

printf

main

33

printf on the stack, again

int main(void) {

printf ("Numbers: %d,%d”) ;
return O;

Main’s frame... so far

main

printf on the stack, again

int main(void) {

printf ("Numbers: %d,%d”) ;
return O;

34

Main’s frame... so far

main

printf on the stack, again

int main(void) ({

printf ("Numbers: 3d,3%d”) ;
return O;

35

main

printf on the stack, again

int main(void) ({

printf ("Numbers: 3d,3%d”) ;
return O;

36

main

printf on the stack, again

int main(void) ({

printf ("Numbers: 3d,3%d”) ;
return O;

37

printf

main

printf on the stack, again

int main(void) ({

printf ("Numbers: 3d,3%d”) ;
return O;

38

printf

main

printf on the stack, again

int main(void) ({
printf ("Numbers: 3d,3%d”) ;

return 0;

}

Where will va_list ap point to after
va_start is called?

39

printf

main

printf on the stack, again

int main(void) {
prlntf(“Numbers d,sd”) ;
return O;
Where will va_list ap pomt to after
va_start is caHed’?
| B IR

printf

main

41

Key problems with printf

® User is responsible for enforcing one-to-one mapping between format
specifier and the arguments passed in

® Do you trust the user to do this the right way? What about an attacker?
® printf implements basically its own runtime parser...
® Parsing is fraught and hard (who wants to parse anything these days?)

® No way to differentiate between code and data! (variations on a theme....)

42

Format string vulnerabilities

® Still, how had could it be?

® \What can an attacker do with a well-crafted format string?

43

Format string vulnerabilities

® Still, how had could it be?

® \What can an attacker do with a well-crafted format string?

® Read arbitrary data (bad)

44

Format string vulnerabilities

® Still, how had could it be?
® \What can an attacker do with a well-crafted format string?
® Read arbitrary data (bad)

® \Write arbitrary data (really bad!!)

45

Format string vulnerabilities
Reading from the stack

® \What does the following do?
printf (“%08x.%08x.%08x.%08x\n") ;

46

Format string vulnerabilities
Reading from the stack

® \What does the following do?
printf (“%08x.%08x.%08x.%08x\n") ;

® Read and print the four words up the stack (above va_list)

® \What's up beyond the argument list? Local variables, caller state, etc....

47

Format string vulnerabilities

Reading via pointer
® \What does the following do?

printf (“%s\n”) ;

48

Format string vulnerabilities
Reading via pointer
® \What does the following do?

printf (“%s\n”) ;

® Take the location va_list points to, interpret it as a char *, and print the
memory at that address as a string until a null byte is reached.

Format string vulnerabilities

Reading arbitrary memory

void () A
char localstring[80] =
"\x10\x01\x48\x08 %08x.%08x.|%s|";
int 1, 77
printf (localstring);

What does £ do?

Format string vulnerabilities

Reading arbitrary memory

ﬁ

vold £
char localstring[80] =
"x10\x01\x48\x08 %08x.%08x.|%s|";
int 1, 73
printf (localstring);

First, initializes a character buffer (on stack) with this interesting value...
we'll dissect it later

S

Format string vulnerabilities

Reading arbitrary memory

vold

f(localstring);

}

£ ()

{

char localstring[380] =
"x10\x01\x48\x08 %08x.%08x.|%s|";

prin

e

Declares two integers

52

Format string vulnerabilities

Reading arbitrary memory

volid £ ()

{

char localstring[80]

"x10\x01\x48\x08 %$08x.%08x.|%s|";

int 1, ;

prin

e

f(localstring);

Calls printf

53

Format string vulnerabilities

Reading arbitrary memory

volid f () {

char localstring[80] =
"x10\x01\x48\x08 %08x.%08x. |
ss |y

int 1, 7;

printf (localstring);

localstring buffer

o4

Format string vulnerabilities

Reading arbitrary memory

void f£ () |

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss | "y

int 1, 7;

printf (localstring);

55

Format string vulnerabilities

Reading arbitrary memory

void f£ () |

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss | "y

int 1, 7;

printf (localstring);

56

Format string vulnerabilities

Reading arbitrary memory

void f£ () |

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss | "y

int 1, 7;

printf (localstring);

S7

Format string vulnerabilities

Reading arbitrary memory

void f£ () {

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss |y

int 1, 7J;

printf (localstring);

58

Format string vulnerabilities

Reading arbitrary memory

void f£ () {

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss |y

int 1, 7J;

printf (localstring);

59

Format string vulnerabilities

Reading arbitrary memory

void f£ () {

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss |y

int 1, 7J;

printf (localstring);

60

Format string vulnerabilities

Reading arbitrary memory

void f£ () {

char localstring[80] =
"x10\x01\x48\x08 $08x.%08x. |
ss |y

int 1, 7J;

printf (localstring);

61

Format string vulnerabilities

Reading arbitrary memory

ocalstring[80] =

"x10\x01\x48\x08 $08x.%08x. |

volid f () {
char 1
ss|";
int 1,

7

printf (localstring);

How is print:

- going to parse this format string?

62

Format string vulnerabilities

Reading arbitrary memory

volid f () {

al= afar= 1ng[80] =
'x10\x01\x48\x03] 508x.
$08x.|%s|";

int 1, J;
printf (localstring);

These are just some unprintable bytes
(they encode 0x08480110... important
later)

63

Format string vulnerabilities

Reading arbitrary memory

vold f£ () {

char localstxring[80] =
"xlO\xOl\x48\xO{f}08x.
508x.]%s|";

int 1, 7J;

printf (localstring);

This is an underscore

64

Format string vulnerabilities

Reading arbitrary memory

volid f () {

char localstrangl80] =
"x10\x01\x48\x08 ,
z08x.|%s|";

int 1, J;
printf (localstring);

What does this specifier do?

65

Format string vulnerabilities

Reading arbitrary memory

volid f () {

char localstrangl80] =
"x10\x01\x48\x08 ,
z08x.|%s|";

int 1, J;
printf (localstring);

Print unsigned hex integer... therefore
moving ap

66

Format string vulnerabilities

Reading arbitrary memory

void f£ () {

char localstring] =
"xlO\xOl\X48\X08_%08§ff
z08x.|%s|";

int 1, 7J;

printf (localstring);

This is a perioa

67/

Format string vulnerabilities

Reading arbitrary memory

void f£ () {
char localstring[80] =

"x10\x01\x48\x08 308x.

‘nt 1, J;
printf (localstring);
J

Again, print unsigned hex integer
and move ap, plus a perioa

68

Format string vulnerabilities

Reading arbitrary memory

void f£ () {
char localstring[80] =

"x10\x01\x48\x08 308x.

‘nt 1, J;
printf (localstring);
J

Where is the argument pointer
pointing to now?

69

Format string vulnerabilities

Reading arbitrary memory

void f£ () {
char localstring[80] =

"x10\x0 48\x08 %08x.
$08x ';
' y

printf (localstring);

What does this specitier do?

/70

Format string vulnerabilities

Reading arbitrary memory

void f£ () {
char localstring[80] =

"x10\x0 48\x08 %08x.
$08x ';
' y

printf (localstring);

This will read memory at location
0x08480110!

by extension, can perform any
arbitrary read of process memory!

/1

But it gets worse!

printf can write, too!

e My favorite specitier, %n

® “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

/2

But it gets worse!

printf can write, too!

e My favorite specitier, %n

® “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

int x = 0;
printf ("Hello sn", &x);

/3

But it gets worse!

printf can write, too!

e My favorite specitier, %n

® “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

int x = 0;
printf ("Hello sn", &x);

® After this code, the value of x will be 6.

How can we exploit this?

—

Overwriting return address w/ printf

volid T () {
char butf [200];
strncpy (buf, UserGeneratedString (), 200);
printf (buf) ;

J

vold main () {
()

J

How can we exploit this?

—

Overwriting return address w/ printf

vold £ () {

char butf[200];
strncpy (buf, UserGeneratedString(), 200);

printf (buf) ;
}

vold main () {
()

J

main return address

How can we exploit this?

—

Overwriting return address w/ printf

volid £ () {
char buf[200];
strncpy (buf, UserGeneratedString (), 200);
printf (buf) ;

J

vold main () {
()

J

main return address

How can we exploit this?

Overwriting return address w/ printf va_list ap

f EBP

vold £ () {
char buf[200];
strncpy (buf, UserGeneratedString(), 200);
printf (buf) ;

}

vold main () {
()

J

What can we do from here?

main return address

How can we exploit this?

Overwriting return address w/ printf va_list ap

f EBP

volid f () {
char buf[200];
strncpy (buf, UserGeneratedString(), 200);
printf (buf) ;

}

vold main () {
()

J

It UserGeneratedString() contains %n... we can write
the return address one byte at a time based on length
of our string main return address

How can we exploit this?

Overwriting return address w/ printf va_list ap

f EBP

vold £ () {
char buf[200];
strncpy (buf, UserGeneratedString(), 200);
printf (buf) ;

}

vold main () {
£()

J

Overwrite return address to point to buffer, which
contains shellcode!

main return address

game over, gg

80

printf %n tricks

® Seems kinda hard...
® Specify width
® %n will account for “padding bytes” specified in the width parameter, for example:

® printf (“$5d”, 10) will print 3 spaces followed by the integer: “ 10"; %n
will return 5 (not 2)

® Chain together reads and writes

® Use arbitrary reads to know where bufter is, then construct payload to be
appropriate length to write to return address

® Note: %n is considered dangerous. Most libraries don't support it.

81

What do | do about print£?

® |f you find yourself needing to use printf..

® Be careful (check, double check, triple check your calls to printf)

® Sanitize user inputs (do you really want users inputting %s into the string?)

e snprintf (str, size, format, ..);

® Only prints size characters (and so can restrict arbitrary memory reads)

82

So, in conclusion...

® Functions that take format strings act like little command interpreters...

® Anything that can step outside of the semantics of your runtime system like
this is potentially dangerous

® | etting attackers decide which commands to pass into your command
interpreter is... a bad idea

® Deepak’s version: Don’t let the attacker program the weird machine.

Integer Overflow Vulnerabilities

34

Pop quiz!

100;
200;
a + b;

printf ("%

sd %$d\n",

Ay

o,

C);

What will the code produce?

85

Pop quiz!

100;
200;
a + b;

printf ("%

sd %d\n", a,

o,

C);

What will the code produce?

It depends...

Pop quiz!

int a 100;
int b 200;

int c = a + b; 100, 200, 300

printf ("%d %$d %d\n", a, b, c);

86

Pop quiz

int a = 100;
char b = 200;

int ¢ = a + b; 100, -54, 44

printf ("%d %$d %d\n", a, b, c);

87

88

Integer overflow / underflow

® C defines fixed-width integer types (short, int, long, etc.)that do not
always behave like the integers you might recall from... well, math

® Because of the fixed width, it is possible to overflow or wrap maximum
expressible number for the type usead

® Or underflow in the case of negative numbers

89

Who cares about numbers?

® \What could go wrong here?
® \What if n is too large?

® \What if n is negative?

my type* foo(i1nt n)

{
my type *ptr
sizeof (my type))
for(int 1 =
memset (&
sizeof (my type))
}

return ptr;

J

0
IS

e
’

Tr

malloc(n *

1 < n;
(1], 1,

1++)

{

90

Type conversations are a nightmare

® |nteger type conversions are a very common source of security vulnerabilities

® \What's a type conversion?

91

Type conversations are a nightmare

® |nteger type conversions are a very common source of security vulnerabilities
® \What's a type conversion?

® Conversions happen in three ways
® [runcation
® /ero-extension

® Sign-extension

92

A quick review —
* char

® At |least 8 bits. sizeof (char) ==

® short

® At least 16 bits
e 1nt

® Natural word size of the architecture, at least 16 bits
* long

® At |east 32 bits

Truncation

® Truncation happens when a value with a wider type is converted to a narrower
type

® \When the value is truncated, high-order bytes are removed so it can be the
same width as the narrower type

uint3Z2 t 1 = OxDEADBEEEF;
uintle t j = 1i;
// 7 = OxBEEF

Zero-extension

® /ero-extension occurs when a value with a narrower, unsigned type is
converted to a wider type

® \When a value is zero-extended, it is widened so that it is the same width as
the wider type; the new bytes are unset (0)

= OxBEEF;
— l,'

uintlo -
uint32 -

- -

// 7 = 0xO0000BEEF

Sign-extension

® Sign extension occurs when a value with a narrower, signed type is converted
to a wider type

® \When a value is sign-extended, it is widened so that it is the same width as the
wide type

® |f the sign bit of the original value is set, the new bytes are set

® |f the sign bit is unset, the new bytes are unset

int8 t 1 = 127; // 0111 111:

int8 t J = -127; // 1000 0001 (2s complement)
intle t k 1 = i; // 0000 0000 0111 111:

intle t j i = J; // 1111 1111 1000 0001

96

When do we do what conversion?

® |'m not testing this, but just so you know...

From

signed char

signed char

signed char

signed char

signed short int

signed short int

signed short int

Sign extend to long; convert long to unsigned

signed short int

signed
sighed
signed

sighed

ong int
ong int
ong int

ong int

To

short int

long int

unsigned short int
unsigned long int
char

long int

unsigned char

unsigned long int
char

short int
unsigned char

unsigned short int

Method

Sign-extend
Sign-extend
Sign-extend to short; convert short to unsigned short

Sign-extend to long; convert long to unsigned long

Truncate to low-order byte

Sign-extend

Truncate to low-order byte

Truncate to
Truncate to
Truncate to

Truncate to

ow order byte
ow order bytes
ow order byte

ow order bytes

Lost or Misinterpreted
Safe
Safe

Lost
Lost
Lost

Safe

Lost

Lost
Lost
Lost
Lost
Lost

When do we do what conversion?

® |'m not testing this, but just so you know...

From To Method Lost or Misinterpreted
unsigned char signed short int Zero-extend Safe
unsigned char signed long int Zero-extend Safe
unsigned char unsigned shortint Zero-extend Safe
unsigned char unsigned long int Zero-extend Safe
unsigned short int signed char Preserve low-order byte Lost

unsigned short int signed long int Zero-extend Safe
unsigned short int unsigned char Preserve low-order byte Lost
unsigned long int signed char Preserve low-order byte Lost
unsigned long int signed short int Preserve low-order word Lost

unsigned long int unsigned char Preserve low-order byte Lost

unsigned long int unsigned shortint Preserve low-order word Lost

98

Type conversions happen all the time

® Explicit
e 1nt 1 = (1int) 4.5;

® Implicit
e signed char i = 1; // assignment conversion
e unsigned int j = 2; //assignment conversion

e if (1 < j) {..} // comparison conversion

e vo1d function (int arqg);
function(5.3); // function argument conversion

® Conversion rules are complex, but ever present :)

99

Example of integers causing problems

struct sockaddr 1n
{

short sin family;

u short sin port;
b

J ° ° 7

sockaddr in sockaddr; What's wrong with this code?
int port; // Get this from a user

1f (port < 1024 && !1s root) {
// Quit, or handle error

} else {
sockaddr.sin port = port;

J

100

Example of integers causing problems

struct Sockaddr_in

{

by

short sin family;
u short sin port;

sockaddr 1n sockaddr;

int port;

1f

J

(port < 1024 && !1s root)
// Quit, or handle error
} else |

sockaddr.sin port

port;

// Get this from a user

{

® The field sin port is declared as a 16-
bit unsigned integer

® The variable port is declared as a 32-
bit signed integer

® \When sin port is set to port, the
two high-order bytes of value are
truncated and the port number is
changed

Example of integers causing problems

struct sockaddr in ® Exp\oit
{

short sin family; ® Setport = 65979
u short sin port;

i ® Comparison will fail

sockaddr 1n sockaddr;

int port; // Get this from a user ® Assignment will truncate 65979
(0x000101BB in hex); to 0x01BB, or
1f (port < 1024 && !1s root) { 443
// Quit, or handle error
poetee | ® 443 for HTTPS; k
sockaddr.sin port = port; 443 1s port Tor ; NOW attacker

} has privilege to read all traffic over
443)

101

Example of integers causing problems

Nasdaqg had to adjust core code after
Berkshire Hathaway share price high

m By Anthony Spadafora last updated May 10, 2021

Stock price exceeded the maximum value for storing 32-bit
unsigned integers

Nasdaq’s computer system literally can’t handle
Berkshire Hathaway’s sky-high stock price

@ ' By Matt Egan, CNN Business
P @ 2minread - Updated 1:24 PM EDT, Fri May 7, 2021

102

Example of integers causing problems

2,003.27 uso NYSE: BRKA
-422,453.97 (99.53%) +

May 6, 2:23 PM EDT -Disclaimer

1 day 5 days 1 month 6 months YTD 1 year S years Max

500,000 .
400‘0000_ s . ‘T Prev'ous .

E close
300,000 424,457.25
200,000 :
100,000 -

426,700.00 USD 9:30 AM
| ' | f I —] .
10:00 AM 12:00 PM 1:00 PM 2:00 PM 3:.00 PM 4:00 PM

Open 426,700.00 Mkt cap 3.05B Prev close 424,457.25
High 432,400.00 P/E ratio 0.030 52-wk high 432,400.00
Low 94.27 Div yield - 52-wk low 94.27

103

What do | do about integers?!

® Use a strongly typed language
® Essentially minimizes type conversions and is much stricter about type checking
® Most integer overflow problems go away in Rust, Go
® Runtime checking
® gcc -ftrapv (trap on signed overtlow on add, sub, mult)
® Satfe libraries (Check out Satelnt)
® Static analysis

® Can check code retroactively tor potentially weird behavior

104

Next time...

® Final application security lecture!

® \We talk about defenses and my tavorite type ot appsec attack, return-orientea
programming :)

105

