
CSE127, Computer Security
Control flow vulnerabilities continued: format strings, integer overflow

Housekeeping
General course things to know

• PA1 due TONIGHT by 1/15 at 11:59

• Good luck!

• Do not forget to submit your AI attestation!

• Due 1/16 at 11:59

• #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/71475/quizzes/
238979, reminder to do this!

• PA2 releases Friday at midnight, due 1/27 at 11:59

2

https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979
https://canvas.ucsd.edu/courses/71475/quizzes/238979

Previously on CSE127…
Buffer overflows!

• We talked about software exploits, control
flow, and buffer overflows on stack…

• Mixing of code / data in the runtime allows
for all kinds of “weird” behavior, crashing
programs, at worst, overwriting return
address….

3

Addressing buffer overflows
• Best way to avoid these bugs is to not have them in the first place

• If you can, avoid C/C++ for systems programming. Use a memory-safe language
instead (Rust, Go)

• Train developers to understand these bugs and their ramifications (can only really
get you so far)

• Finding bugs is a must

• Manual code review, static analysis, fuzzing, etc., — this is a whole subfield of
computer security

• Or… we can make the bugs harder to exploit

• More on this in one lecture (next time: AppSec defenses)
4

Today’s lecture – More software vulns
Learning Objectives

• Understand variadic functions in C

• Learn how format strings really work, and how you can exploit format strings
(and printf) to read and write arbitrarily on the stack

• Understand the basic concepts of integer overflows, what we can do with
them, and why they matter

5

Format String Vulnerabilities

6

printf

• What does the following code do?

7

printf(“Hello world!”);

• What does the following code do?

• What about this?

8

printf(“Hello world!”);

printf(“%s”, “Hello world!”);

printf

printf

• What does the following code do?

• What about this?

• What about this?

9

printf(“Hello world!”);

printf(“%s”, “Hello world!”);

printf(“Hello world!%s”);

printf API
• printf(“Diagnostic number: %d, message: %s\n”, j, buf)

• “If format includes format specifiers (subsequences beginning with %), the
additional arguments following format are formatted and inserted in the
resulting string replacing their respective specifiers.”

• A format specifier follows this prototype:

• %[flags][width][.precision][length]specifier

10

printf API

• Flags

• - Left-justify within the given field width

• + Precede the result with a plus or minus sign

• 0 Left-pads the number with zeroes (0) instead of spaces when padding is
specified

11

%[flags][width][.precision][length]specifier

printf API

• Width

• <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

12

%[flags][width][.precision][length]specifier

printf API

• Width

• <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

• What will the following print?

13

%[flags][width][.precision][length]specifier

printf(“%4s”, “H”);

printf API

• Width

• <Number> — minimum characters to be printed. If value is shorter than
number, print blank spaces

• What will the following print?

14

%[flags][width][.precision][length]specifier

printf(“%4s”, “H”);

“<space><space><space>H”

printf API

• Precision

• .<number> — for integer specifiers, precision specifies the minimum
number of digits to be written; if value is shorter than number, pad with
zeroes

• For s, maximum number of characters to be printed, default is print until
ending null character is encountered

• What will the following print?

15

%[flags][width][.precision][length]specifier

printf(“%.3s”, “Hello”);

printf API

• Length

• Modifies the length of the data type provided (doing conversions if
necessary… more on this later)

• h: char

• hh: short

• l: long

• ll: long long

16

%[flags][width][.precision][length]specifier

printf API continued

• How many arguments does printf take?

17

An introduction to variadic functions

int printf(const char *format, ...)

printf API continued

• How many arguments does printf take?

• It depends on you!

• C supports functions with a variable number of arguments, called variadic
functions

18

An introduction to variadic functions

int printf(const char *format, ...)

Variadic functions

• Question: If the number of arguments is not pre-determined for variadic
functions, then how does the called function know how many were passed
in?

19

How do we implement them?

Variadic functions

• Question: If the number of arguments is not pre-determined for variadic
functions, then how does the called function know how many were passed
in?

• printf works by parsing the format string during runtime, and keeping track
of necessary stack variables independently

20

How do we implement them?

Simple printf implementation

21

int printf(const char* format, ...) {
 int i; char c; char *s; double d;
 va_list ap; /* Declare an "argument pointer" to a variable argument list */
 va_start(ap, format); /* Iniitalize argument pointer using last known argument*/

 for (char* p = format, *p != '\0', p++) {
 if (*p == '%') {
 switch (*++p) {
 case 'd':
 i = va_arg(ap, int); break;
 case 's':
 s = va_arg(ap, char*); break;
 case 'c':
 c = va_arg(ap, char); break;
 }
 }
 }
}

Simple printf implementation

22

int printf(const char* format, ...) {
 int i; char c; char *s; double d;
 va_list ap; /* Declare an "argument pointer" to a variable argument list */
 va_start(ap, format); /* Iniitalize argument pointer using last known argument*/

 for (char* p = format, *p != '\0', p++) {
 if (*p == '%') {
 switch (*++p) {
 case 'd':
 i = va_arg(ap, int); break;
 case 's':
 s = va_arg(ap, char*); break;
 case 'c':
 c = va_arg(ap, char); break;
 }
 }
 }
}

printf keeps an “argument pointer,”
sort of like an internal stack pointer…

Simple printf implementation

23

int printf(const char* format, ...) {
 int i; char c; char *s; double d;
 va_list ap; /* Declare an "argument pointer" to a variable argument list */
 va_start(ap, format); /* Iniitalize argument pointer using last known argument*/

 for (char* p = format, *p != '\0', p++) {
 if (*p == '%') {
 switch (*++p) {
 case 'd':
 i = va_arg(ap, int); break;
 case 's':
 s = va_arg(ap, char*); break;
 case 'c':
 c = va_arg(ap, char); break;
 }
 }
 }
}

Function parses out arguments based
on the format string itself

printf on the stack

24

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

Main’s frame… so far

main

printf on the stack

25

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

6

Main’s frame… so far

main

printf on the stack

26

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
} 5

6

Main’s frame… so far

main

printf on the stack

27

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

Address pointing to format
string

5

6

Main’s frame… so far

main

printf on the stack

28

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

return address

Address pointing to format
string

5

6

Main’s frame… so far

main

printf on the stack

29

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

return address

Address pointing to format
string

5

6

Main’s frame… so far

main

printf

printf on the stack

30

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

old frame pointer

return address

Address pointing to format
string

5

6

Main’s frame… so far

main

printf

printf on the stack

31

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

va_list ap

old frame pointer

return address

Address pointing to format
string

5

6

Main’s frame… so far

main

printf

printf on the stack

32

int main(void) {
 ...
 printf(“Numbers: %d,%d”, 5, 6);
 return 0;
}

va_list ap

old frame pointer

return address

Address pointing to format
string

5

6

Main’s frame… so far

main

printf

After calling va_start, ap is initialized
to right after the format string and reads
arguments defined by format string

printf on the stack, again

33

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

Main’s frame… so far

main

This time, I haven’t passed in anything to
printf… what happens?

printf on the stack, again

34

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

Main’s frame… so far

main

printf on the stack, again

35

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

Address pointing to format
string

Main’s frame… so far

main

printf on the stack, again

36

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
} return address

Address pointing to format
string

Main’s frame… so far

main

printf on the stack, again

37

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

old frame pointer

return address

Address pointing to format
string

Main’s frame… so far

main

printf

printf on the stack, again

38

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

va_list ap

old frame pointer

return address

Address pointing to format
string

Main’s frame… so far

main

printf

printf on the stack, again

39

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

va_list ap

old frame pointer

return address

Address pointing to format
string

Main’s frame… so far

main

printf

Where will va_list ap point to after
va_start is called?

printf on the stack, again

40

int main(void) {
 ...
 printf(“Numbers: %d,%d”);
 return 0;
}

va_list ap

old frame pointer

return address

Address pointing to format
string

Main’s frame… so far

main

printf

Where will va_list ap point to after
va_start is called?

Somewhere in main’s frame…

Key problems with printf
• User is responsible for enforcing one-to-one mapping between format

specifier and the arguments passed in

• Do you trust the user to do this the right way? What about an attacker?

• printf implements basically its own runtime parser…

• Parsing is fraught and hard (who wants to parse anything these days?)

• No way to differentiate between code and data! (variations on a theme….)

41

Format string vulnerabilities

42

• Still, how had could it be?

• What can an attacker do with a well-crafted format string?

Format string vulnerabilities

43

• Still, how had could it be?

• What can an attacker do with a well-crafted format string?

• Read arbitrary data (bad)

Format string vulnerabilities

44

• Still, how had could it be?

• What can an attacker do with a well-crafted format string?

• Read arbitrary data (bad)

• Write arbitrary data (really bad!!)

Format string vulnerabilities

45

• What does the following do?

Reading from the stack

printf(“%08x.%08x.%08x.%08x\n”);

Format string vulnerabilities

46

• What does the following do?

• Read and print the four words up the stack (above va_list)

• What’s up beyond the argument list? Local variables, caller state, etc….

Reading from the stack

printf(“%08x.%08x.%08x.%08x\n”);

Format string vulnerabilities

47

• What does the following do?

Reading via pointer

printf(“%s\n”);

Format string vulnerabilities

48

• What does the following do?

• Take the location va_list points to, interpret it as a char *, and print the
memory at that address as a string until a null byte is reached.

Reading via pointer

printf(“%s\n”);

Format string vulnerabilities

49

Reading arbitrary memory

void f() {
 char localstring[80] =
“\x10\x01\x48\x08_%08x.%08x.|%s|";
 int i, j;
 printf(localstring);
}

What does f do?

Format string vulnerabilities

50

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|%s|";
 int i, j;
 printf(localstring);
}

First, initializes a character buffer (on stack) with this interesting value…
we’ll dissect it later

Format string vulnerabilities

51

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|%s|";
 int i, j;
 printf(localstring);
}

Declares two integers

Format string vulnerabilities

52

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|%s|";
 int i, j;
 printf(localstring);
}

Calls printf

Format string vulnerabilities

53

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

localstring buffer

Format string vulnerabilities

54

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

i

localstring buffer

Format string vulnerabilities

55

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
} j

i

localstring buffer

Format string vulnerabilities

56

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

addr of localstring

j

i

localstring buffer

Format string vulnerabilities

57

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

return address

addr of localstring

j

i

localstring buffer

Format string vulnerabilities

58

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

old ebp

return address

addr of localstring

j

i

localstring buffer

Format string vulnerabilities

59

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

Format string vulnerabilities

60

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

Format string vulnerabilities

61

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.%08x.|
%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

How is printf going to parse this format string?

Format string vulnerabilities

62

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

These are just some unprintable bytes
(they encode 0x08480110… important
later)

Format string vulnerabilities

63

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer
This is an underscore

Format string vulnerabilities

64

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

What does this specifier do?

Format string vulnerabilities

65

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

Print unsigned hex integer… therefore
moving ap

Format string vulnerabilities

66

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer
This is a period

Format string vulnerabilities

67

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

Again, print unsigned hex integer
and move ap, plus a period

Format string vulnerabilities

68

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

Where is the argument pointer
pointing to now?

Format string vulnerabilities

69

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

What does this specifier do?

Format string vulnerabilities

70

Reading arbitrary memory

void f() {
 char localstring[80] =
"x10\x01\x48\x08_%08x.
%08x.|%s|";
 int i, j;
 printf(localstring);
}

va_list ap

old ebp

return address

addr of localstring

j

i

localstring buffer

This will read memory at location
0x08480110!

by extension, can perform any
arbitrary read of process memory!

But it gets worse!

• My favorite specifier, %n

• “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

71

printf can write, too!

But it gets worse!

• My favorite specifier, %n

• “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

72

printf can write, too!

int x = 0;
printf("Hello %n", &x);

But it gets worse!

• My favorite specifier, %n

• “Nothing printed. The corresponding argument must be a pointer to a
signed int. The number of characters written so far is stored in the pointed
location.”

• After this code, the value of x will be 6.

73

printf can write, too!

int x = 0;
printf("Hello %n", &x);

How can we exploit this?

74

Overwriting return address w/ printf

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

How can we exploit this?

75

Overwriting return address w/ printf

main return address

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

How can we exploit this?

76

Overwriting return address w/ printf

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

f return address

buf address

buf

main EBP

main return address

How can we exploit this?

77

Overwriting return address w/ printf va_list ap

f EBP

f return address

buf address

buf

main EBP

main return address

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

What can we do from here?

How can we exploit this?

78

Overwriting return address w/ printf va_list ap

f EBP

f return address

buf address

buf

main EBP

main return address

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

If UserGeneratedString() contains %n… we can write
the return address one byte at a time based on length
of our string

How can we exploit this?

79

Overwriting return address w/ printf va_list ap

f EBP

f return address

buf address

shellcode at address 0x08480001

main EBP

main return address

void f(){
 char buf[200];
 strncpy(buf, UserGeneratedString(), 200);
 printf(buf);
}

void main(){
 f()
}

Overwrite return address to point to buffer, which
contains shellcode!

game over, gg

printf %n tricks
• Seems kinda hard…

• Specify width

• %n will account for “padding bytes” specified in the width parameter, for example:

• printf(“%5d”, 10) will print 3 spaces followed by the integer: “ 10”; %n
will return 5 (not 2)

• Chain together reads and writes

• Use arbitrary reads to know where buffer is, then construct payload to be
appropriate length to write to return address

• Note: %n is considered dangerous. Most libraries don’t support it.

80

• If you find yourself needing to use printf…

• Be careful (check, double check, triple check your calls to printf)

• Sanitize user inputs (do you really want users inputting %s into the string?)

• snprintf(str, size, format, …);

• Only prints size characters (and so can restrict arbitrary memory reads)

81

What do I do about printf?

• Functions that take format strings act like little command interpreters…

• Anything that can step outside of the semantics of your runtime system like
this is potentially dangerous

• Letting attackers decide which commands to pass into your command
interpreter is… a bad idea

• Deepak’s version: Don’t let the attacker program the weird machine.

82

So, in conclusion…

Integer Overflow Vulnerabilities

83

84

Pop quiz!

What will the code produce?

a = 100;
b = 200;
c = a + b;

printf("%d %d %d\n", a, b, c);

85

Pop quiz!

What will the code produce?

a = 100;
b = 200;
c = a + b;

printf("%d %d %d\n", a, b, c);
It depends…

86

Pop quiz!

int a = 100;
int b = 200;
int c = a + b;

printf("%d %d %d\n", a, b, c);

100, 200, 300

87

Pop quiz

int a = 100;
char b = 200;
int c = a + b;

printf("%d %d %d\n", a, b, c);

100, -54, 44

• C defines fixed-width integer types (short, int, long, etc.) that do not
always behave like the integers you might recall from… well, math

• Because of the fixed width, it is possible to overflow or wrap maximum
expressible number for the type used

• Or underflow in the case of negative numbers

88

Integer overflow / underflow

• What could go wrong here?

• What if n is too large?

• What if n is negative?

89

Who cares about numbers?
my_type* foo(int n)
{
 my_type *ptr = malloc(n *
sizeof(my_type));
 for(int i = 0; i < n; i++) {
 memset(&ptr[i], i,
sizeof(my_type));
 }
 return ptr;
}

90

Type conversations are a nightmare
• Integer type conversions are a very common source of security vulnerabilities

• What’s a type conversion?

91

Type conversations are a nightmare
• Integer type conversions are a very common source of security vulnerabilities

• What’s a type conversion?

• Conversions happen in three ways

• Truncation

• Zero-extension

• Sign-extension

92

A quick review —
• char

• At least 8 bits. sizeof(char) == 1

• short

• At least 16 bits

• int

• Natural word size of the architecture, at least 16 bits

• long

• At least 32 bits

93

Truncation
• Truncation happens when a value with a wider type is converted to a narrower

type

• When the value is truncated, high-order bytes are removed so it can be the
same width as the narrower type

uint32_t i = 0xDEADBEEF;
uint16_t j = i;

// j = 0xBEEF

94

Zero-extension
• Zero-extension occurs when a value with a narrower, unsigned type is

converted to a wider type

• When a value is zero-extended, it is widened so that it is the same width as
the wider type; the new bytes are unset (0)

uint16_t i = 0xBEEF;
uint32_t j = i;

// j = 0x0000BEEF

95

Sign-extension
• Sign extension occurs when a value with a narrower, signed type is converted

to a wider type

• When a value is sign-extended, it is widened so that it is the same width as the
wide type

• If the sign bit of the original value is set, the new bytes are set

• If the sign bit is unset, the new bytes are unset

int8_t i = 127; // 0111 1111
int8_t j = -127; // 1000 0001 (2s complement)
int16_t k_i = i; // 0000 0000 0111 1111
int16_t j_i = j; // 1111 1111 1000 0001

96

When do we do what conversion?
• I’m not testing this, but just so you know…

97

When do we do what conversion?
• I’m not testing this, but just so you know…

98

Type conversions happen all the time
• Explicit

• int i = (int) 4.5;

• Implicit

• signed char i = 1; // assignment conversion

• unsigned int j = 2; //assignment conversion

• if (i < j) {…} // comparison conversion

• void function (int arg);
function(5.3); // function argument conversion

• Conversion rules are complex, but ever present :)

99

Example of integers causing problems

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
};

sockaddr_in sockaddr;
int port; // Get this from a user

if (port < 1024 && !is_root) {
 // Quit, or handle error
} else {
 sockaddr.sin_port = port;
}

What’s wrong with this code?

100

Example of integers causing problems

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
};

sockaddr_in sockaddr;
int port; // Get this from a user

if (port < 1024 && !is_root) {
 // Quit, or handle error
} else {
 sockaddr.sin_port = port;
}

• The field sin_port is declared as a 16-
bit unsigned integer

• The variable port is declared as a 32-
bit signed integer

• When sin_port is set to port, the
two high-order bytes of value are
truncated and the port number is
changed

101

Example of integers causing problems

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
};

sockaddr_in sockaddr;
int port; // Get this from a user

if (port < 1024 && !is_root) {
 // Quit, or handle error
} else {
 sockaddr.sin_port = port;
}

• Exploit

• Set port = 65979

• Comparison will fail

• Assignment will truncate 65979
(0x000101BB in hex); to 0x01BB, or
443

• 443 is port for HTTPS; now attacker
has privilege to read all traffic over
443 :)

102

Example of integers causing problems

103

Example of integers causing problems

104

What do I do about integers?!
• Use a strongly typed language

• Essentially minimizes type conversions and is much stricter about type checking

• Most integer overflow problems go away in Rust, Go

• Runtime checking

• gcc -ftrapv (trap on signed overflow on add, sub, mult)

• Safe libraries (Check out SafeInt)

• Static analysis

• Can check code retroactively for potentially weird behavior

105

Next time…
• Final application security lecture!

• We talk about defenses and my favorite type of appsec attack, return-oriented
programming :)

