CSE127, Computer Security

Control flow vulnerabilities and buffer overflows

UCSan Diego

Housekeeping

General course things to know

® PA1 due Thursday by 1/15 at 11:59

® Hopetully by now you have set up the infrastructure needed for PA1, it not, no
time like the present

® Do not forget to submit your Al attestation!

® Due 1/16 at 11:59

e #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/71475/quizzes/238979,
reminder to do this!

® PA2 releases Friday at midnight, due 1/27 at 11:59

https://canvas.ucsd.edu/courses/71475/quizzes/238979

Previously on CSE127...

® \We talked about C.I.A., threat modeling, and the adversarial mindset

® Question: How can we apply these concepts to application areas we care
about? Like software, web, etc?

Today’s lecture — Control flow vulnerabilities and buffer overflows

Learning Objectives
® Understand basic software exploits in programs

® Understand how bufter overtlow vulnerabilities can be exploited, with
specifics of x86-32bit and C

® |dentify common bufter overflow vulnerability patterns in code and assess
their impact

® | earn best practices for avoiding buffer overtlow vulnerabilities during
implementation

Software Security

When is a program considered secure?

® Definition: When it does exactly what it should.

® \What are some issues with this definition?

When is a program considered secure?

® Definition: When it does exactly what it should.
® \What are some issues with this definition?

® How do we know what a program is supposed to do?
® Somebody tells us (so we have to trust them)

® \\We write the code ourselves (but requires significant trust of every aspect of
the system stack)

® \\e have access to the formal specification (and we actually choose to read
it)

When is a program considered secure?

® Better definition: A program is secure when it doesn’t do bad things
® Much easier to specify a list of "bad” things, here are some examples:
® Delete or corrupt important files
® Crash the system
® Send passwords over the Internet
® Send threatening emails to Deepak about his podcast policy

® Unfortunately, software can be mostly good, but occasionally be made to do
bad things — do we still consider it secure?

Weird machines

® Complex software almost always contained
unintended functionality when the input
changes

e \We call this artifact “weird”

® An exploit is a mechanism where an attacker
can trigger unintended functionality in the
system; e.g., “programming” the weird
machine

® Security requires understanding both intendea
and unintended functionality in implementation

® Developers could miss things

® Attackers could be clever

7

Expected, valid input

Unintended
. functionality,
ii.e. the "weird

Normal, intended machine"

functionality

Unexpected input

https://en.wikipedia.org/wiki/Weird_machine

10

What is a software vulnerability?

® A bug in a software program that allows an unprivileged user capabilities that
should be denied to them

® What security property does this violate?

11

What is a software vulnerability?

® A bug in a software program that allows an unprivileged user capabilities that
should be denied to them

® What security property does this violate?

® Most classic and important vulnerabilities violate what's called “control flow
integrity”

12

What is a software vulnerability?

® A bug in a software program that allows an unprivileged user capabilities that
should be denied to them

® What security property does this violate?

® Most classic and important vulnerabilities violate what's called “control flow
integrity”

® Attacker can run code of their choosing on your computer.

® Usually involves violating assumptions of the programming language or
underlying run-time system (including OS, hardware assumptions!)

13

What are the exploits we're discussing today?

® Our threat model

® \ictim code is handling input that comes across a security boundary. When

might this happen in real lite?

14

What are the exploits we're discussing today?

® Our threat model

® \ictim code is handling input that comes across a security boundary. When

might this happen in real lite?

® PDF processing, word processing, web browsing... basically all user-
facing software must interact across a security boundary

15

What are the exploits we're discussing today?

® Our threat model

® \ictim code is handling input that comes across a security boundary. When

might this happen in real lite?

® PDF processing, word processing, web browsing... basically all user-
facing software must interact across a security boundary

® \\e want to protect integrity and confidentiality of internal data from being
compromised by malicious users

® Today's primary example: buffer overflow

® Provide input that “overflows” the memory a program has allocated for it

Programs, Functions, Memory,
Assembly

17

A rapid refresher

® \What is a function?

® \What is a stack?

® \What is a call stack? (aka function stack?)
® \What are CPU registers?

® \What are some important, special registers used for handling control flow?

18

A rapid refresher

® \What is a function?

® Self contained block of code that performs a specific task... notably, can be
called by other functions

® \What is a stack?
® \What is a call stack? (aka tfunction stack?)
® \What are CPU registers?

® \What are some important, special registers used for handling control flow?

19

A rapid refresher

® \What is a function?
® \What is a stack?
® Data structure that tfollows a LIFO strategy (last-in, first-out).
® \What is a call stack? (aka function stack?)
® \What are CPU registers?

® \What are some important, special registers used for handling control flow?

20

A rapid refresher

® \What is a function?
® \What is a stack?
® \What is a call stack? (aka function stack?)

® Data structure that tracks active functions in a program to manage function
calls, local variables, and return addresses

® \What are CPU registers?

® \What are some important, special registers used for handling control flow?

21

A rapid refresher

® \What is a function?

® \What is a stack?

® \What is a call stack? (aka function stack?)
® \What are CPU registers?

® Processor-enabled fast storage for temporarily holding data, instructions,
addresses, values, etc.

® 6 “general-purpose” registers in x86: EAX, EBX, ECX, EDX, ESI, EDI

® \What are some important, special registers used for handling control flow?

22

A rapid refresher

® \What is a function?

® \What is a stack?

® \What is a call stack? (aka function stack?)

® \What are CPU registers?

® \What are some important, special registers used for handling control flow?
® Program counter (EIP), Stack pointer (ESP), Frame (or base) pointer (EBP)

® These keep track of function stacks and where the program should execute
from

23

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)

e mov 0x34, %eax

24

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)

®* mov 0x34, %eax (moves 0x34 into eax)

® add 0x10, %eax

25

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)
®* mov 0x34, %eax (moves 0x34 into eax)

® add 0x10, %eax (adds Ox10 to eax)

® MOV Jeax, jsedx

26

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)
®* mov 0x34, %eax (moves 0x34 into eax)

® add 0x10, %eax (adds Ox10 to eax)

* mov %eax, %edx (copies value of %eax into %edx)

® push %eax

27

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)
®* mov 0x34, %eax (moves 0x34 into eax)
® add 0x10, %eax (adds Ox10 to eax)
* mov %eax, %edx (copies value of %eax into %edx)

* push %eax (pushes the value of %eax onto stack and updates %esp)

e call $0x12345

28

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)
®* mov 0x34, %eax (moves 0x34 into eax)
® add 0x10, %eax (adds Ox10 to eax)
* mov %eax, %edx (copies value of %eax into %edx)
* push %eax (pushes the value of %eax onto stack and updates %esp)

® call $0x12345 (calls function at this address updating %eip)

e jmp $0x12345

29

x86 refresher

® \What do the following assembly instructions do? (Using AT&T syntax)
®* mov 0x34, %eax (moves 0x34 into eax)
® add 0x10, %eax (adds Ox10 to eax)
* mov %eax, %edx (copies value of %eax into %edx)
* push %eax (pushes the value of %eax onto stack and updates %esp)
® call $0x12345 (calls function at this address updating %eip)

* ymp $0x12345 (moves instruction pointer to this address)

30

How is process memory laid out? (Linux 32-bit)

® Stack
® [ocal variables, call stack

® Heap

® Dynamically created variables; malloc,
new, etc.

® Data segment (static variables, global
variables

® .data, .bss
® [ext segment

® Code has to also exist somewhere

Memory Layout
of C

STACK

growth

Stack
growth
Heap T

HEAP

Static

UNINITIALIZE (.BSS)

INITIALIZE (.DATA)

CODE (.text)

Dynamic
Memory
Layout

31

C Arrays

® \What is an array?

void function(int a, int b, int c¢) {
char bufferl[5];
char buffer2([10];

}

void main() {

function(1l,2,3);
}

32

C Arrays

® \What is an array?

® Contiguous block of memory of a fixed
size.

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

33

C Arrays

® \What is an array?

® Contiguous block of memory of a fixed
size.

® How much memory is allocated on stack for
these char buffers?

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

34

C Arrays

® \What is an array?

® Contiguous block of memory of a fixed
size.

® How much memory is allocated on stack for
these char buffers?

® 20 bytes (8 bytes for buffer1, 12 tor buffer2)

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

pushl %ebp
movl %esp,%ebp

subl $20,%esp

35

C Arrays

® \What is an array?

® Contiguous block of memory of a fixed
size.

® How much memory is allocated on stack for
these char buffers?

® 20 bytes (8 bytes for buffer1, 12 tor buffer2)

® Provocation: Will the program throw an error
it you write beyond the bufter?

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

pushl %ebp
movl %esp,%ebp

subl $20,%esp

36

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function

2 void function(int a, int b, int c¢) {
arguments:

char bufferl|[5];
char buffer2[10];

}

void main() {
function(1l,2,3);
}

37

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function

2 void function(int a, int b, int c¢) {
arguments:

char bufferl|[5];
char buffer2[10];
® Caller }

void main() {
function(1l,2,3);
}

38

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function

2 void function(int a, int b, int c¢) {
arguments:

char bufferl|[5];
char buffer2[10];
® Caller }

| void main() {
® How does function know where to return to function(1,2,3);

after it's done? }

39

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function
arguments?

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

® Caller }
| void main() {
® How does function know where to return to function(1,2,3);
after it's done? }

® Caller pushes %eip as return address

40

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function
arguments?

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

® Caller }
| void main() {
® How does function know where to return to function(1,2,3);
after it's done? }

® Caller pushes %eip as return address

® \\here is the return address stored?

41

Understanding function calls — callers and callees

® Two functions: main (caller) and function (callee)

® \Who is responsible for passing in function
arguments?

void function(int a, int b, int c¢) {
char bufferl|[5];
char buffer2[10];

® Caller }
| void main() {
® How does function know where to return to function(1,2,3);
after it's done? }

® Caller pushes %eip as return address
® \Where is the return address stored?

® On the stack!

42

Function Stack Organization

® Stacks are divided into frames

® Each frame stores locals + args to called
functions

® call instruction will push the return address
(e.g., where you were previously) onto the stack

® %esp points to the top of the stack

® x86: stack grows down (from high to low
addresses)

® %ebp points to the caller's frame on the stack
(frame pointer)

Stack Pointer

top of stack

Frame Pointer

>

Locals of
DrawLine

stack frame
for

DrawSqguare <

subroutine

>

Return Address

Parameters for
DrawlLine

.

Locals of
DrawSquare

Return Address

Parameters for
DrawSquare

stack frame
for
DrawLine
subroutine

https://en.wikipedia.org/wiki/Call_stack

43

Caller / Callee Responsibilities during call

® \What are the responsibilities of the caller?
® Pass arguments, save return address, call new function
® \What is the responsibility of the callee?

® Save old FP, set FP = SP, allocate stack space tfor local storage

44

Caller / Callee Responsibilities during ret

® \What does the callee do when returning?
® Pop local storage
® SetSP=FP
® Pop frame pointer
® Pop return address and ret
® \What does the caller do when returning?

® Pop arguments and continue

45

example.c - calling

void foo (int a, int b) {

char bufl[le6];

int main() {

foo (3,6) ;

stolen w/ love from UMich

46

example.c - calling

void foo (int a, int b) {

char bufl[le6];

int main() {

foo (3,6);

Sp —»

main

«—FP

stolen w/ love from UMich

example.c - calling

void foo (int a, int b) {
char bufl[l6];
}
int main() { main
foo (3,6); SP—
local variables
} «—FP

stolen w/ love from UMich

48

example.c - calling

void foo (int a, int b) {

char bufl[leé];

int main() {

foo(3,6) ;

main

«—FP

stolen w/ love from UMich

49

example.c - calling

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

main

«—FP

stolen w/ love from UMich

50

example.c - calling

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

foo

main

«—FP

stolen w/ love from UMich

S

example.c - calling

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

«— [P
foo

main

stolen w/ love from UMich

52

example.c - calling

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

«— [P
foo

main

stolen w/ love from UMich

53

example.c - returning

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

«— [P
foo

main

stolen w/ love from UMich

o4

example.c - returning

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

«— [P
foo

main

stolen w/ love from UMich

55

example.c - returning

void foo (int a, int b) {

char bufl[1l6];

int main() {

foo (3,6);

foo

main

«—FP

stolen w/ love from UMich

56

example.c - returning

void foo (int a, int b) {

char bufl[leé];

SP

int main() {

foo(3,6) ;

foo

main

«—FP

stolen w/ love from UMich

S7

example.c (x86)

int main() {

foo (3,6) ;

malin:

push 3ebp

movl %Jesp, sebp
push $S0x06

push $0x03

call foo

leave

ret

void foo (int a, int b) {

}

foo:

char bufl

push 3ebp
movl %esp
sub $0x10
leave

ret

[16];

, sebp
, sesp

stolen w/ love from UMich

example.c (x86)

int main() {

foo (3,6);

example.c (x86)

int main() {

foo (3,6);

example.c (x86)

int main() {

foo (3,6);

void foo (int a, int b) {
char bufl[1l6];

}

foo:

push %ebp

movl 3sesp, %ebp
sub $0x10, %esp
leave

ret

stolen w/ love from UMich

Buffer Overflows

63

Buffer overflow example

void foo (char *str) {

char buffer|[4],;
strcpy (buffer, str);

int main() {

char str
foo(str) ;

“1234567890AB”;

Where is the problem with this code?

stolen w/ love from UMich

64

Buffer overflow example

void foo (char *str) {

strcpy (buffer, str);

int main() {

char str
foo(str) ;

Buffer is not big enough to hold
12 bytes of input!

stolen w/ love from UMich

Buffer overflow example

int main() { void foo (char *str) ({
char str = “1234567890AB” ; S e butter. str)
foo (str) ; PY ' '
}
}
foo:
main: rﬁg\srh :le)g sebp
push ?ebP) sub $0x4, %esp
mov %sesp, %sebp push 0x8 (%ebp)
push str ptr lea -0xc(%ebp), %edx
call foo push %edx
leave call strcpy
ret leave
ret

65 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

int main() {

char str = “1234567890AB"”;
foo(str) ;

malin:
push 3ebp
mov sesp, 3sebp
push str ptr
call foo
leave
ret

prev FP

66 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

int main() {

char str = “1234567890AB"”;
foo(str) ;

malin:
push 3ebp
mov sesp, 3sebp

push str ptr str_ptr
call foo

leave prev FP
ret

67 Stll:'_pt]:‘: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

int main() {

char str = “1234567890AB"”;
foo(str) ;

main:
pUSh %ebp return address
mov sesp, 3sebp
push str ptr str_ptr
call foo
leave
ret

prev FP

68 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

volid foo (char *str) {

char buffer|[4];
strcpy (buffer, str);

foo:
push 3ebp
mov sesp, %sebp

sub $0x4, %esp return address
push 0x8 (%ebp)
lea -0Oxc (%ebp) , sedx str_ptr

push %edx
call strcpy
leave

ret

prev FP

69 StI‘_pt]:‘: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

char buffer[4];
strcpy (buffer, str);

foo:
push %ebp
mov dsesp, %sebp
sub $0x4, %esp
push 0x8 (%ebp)
lea -0Oxc (%ebp) , sedx
push 3edx
call strcpy
leave
ret

70 str ptr: “1234567890AB”

main FP

return address

str_ptr

prev FP

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

foo:

71 str_ptr:

char buffer[4];
strcpy (buffer, str);

push 3ebp

mov sesp, 3sebp

sub $0x4, %esp
push 0x8 (%ebp)

lea -0Oxc (%ebp) , sedx
push %edx

call strcpy

leave

ret

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

“1234567890AB"”

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

foo:

72 str_ptr :

char buffer[4];
strcpy (buffer, str);

push 3ebp

mov sesp, 3sebp

sub $0x4, %esp
push 0x8 (%ebp)

lea -0Oxc (%ebp) , sedx
push %edx

call strcpy

leave

ret

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

“1234567890AB"”

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

foo:

73 str_ptr :

char buffer[4];
strcpy (buffer, str);

push 3ebp

mov sesp, 3sebp

sub $0x4, %esp
push 0x8 (%ebp)

lea -0xc(%ebp) , sedx
push 3edx

call strcpy

leave

ret

buf_ptr

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

“1234567890AB"”

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

foo:

74 str_ptr :

char buffer[4];
strcpy (buffer, str);

push 3ebp

mov sesp, 3sebp

sub $0x4, %esp
push 0x8 (%ebp)

lea -0Oxc (%ebp) , sedx
push %edx

call strcpy

leave

ret

buf_ptr

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

“1234567890AB"”

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

foo:

75 str_ptr :

char buffer[4];
strcpy (buffer, str);

push 3ebp

mov sesp, 3sebp

sub $0x4, %esp
push 0x8 (%ebp)

lea -0Oxc (%ebp) , sedx
push %edx

call strcpy

leave

ret

buf_ptr

str_ptr

1234

5678

90AB

str_ptr

prev FP

“1234567890AB"”

stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

char buffer[4];
strcpy (buffer, str);

foo:
push 3ebp
mov sesp, %sebp

sub $0x4, %esp 90AB
push 0x8 (%ebp)
lea -0Oxc (%ebp) , sedx str_ptr

push 3edx
call strcpy
leave

ret

prev FP

76 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

char buffer[4];
strcpy (buffer, str);

foo:
push 3ebp
mov sesp, %sebp

sub $0x4, %esp 90AB
push 0x8 (%ebp)
lea -0Oxc (%ebp) , sedx str_ptr

push 3edx
call strcpy
leave

ret

prev FP

77 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

void foo (char *str) {

char buffer[4];
strcpy (buffer, str);

What happens here?
foo:
push 3ebp
mov sesp, 3sebp
sub $0x4, %esp 20AB
push 0x8 (%ebp)
lea -0Oxc (%ebp) , sedx str_ptr

push %edx
call strcpy
leave

ret

prev FP

78 str_ptr: “1234567890AB” stolen w/ love from UMich

Buffer overflow example

v
V' | B Application.exe e S
@ !'| Application.exe has stopped working
}
Windows can check online for a solution to the problem.
£

< Check online for a solution and close the program

< Close the program

(:\2) View problem details

79 str_ptr : V123450 /890AB"” stolen w/ love from UMich

80

So... what is a buffer overflow?

® An anomaly that occurs when a program writes data beyond the boundary of a

buffer

® Archetypal software vulnerability
® Ubiquitous in system software (C/C++)
® OSes, web servers, web browsers, embedded systems, loT devices...

® |f your program crashes with memory faults, you probably have a butter
overtlow vulnerability

® A basic core concept that enables a broad range of possible attacks

® Sometimes, a single byte is all an attacker needs

81

Why do buffer overflows exist?

® One reason — no automatic bounds checking in C/C++. Developers need to
know what they are doing and check access bounds when necessary.

® Another reason: Default C standard library tunctions make it very easy to go
past array bounds

® Most standard string manipulation functions; gets (), strcpy(),
strcat (), all write to the destination buffer until they encounter a
termination null byte in the input.

® Deepak’s version: It you hand someone a footgun, they'll probably shoot
themselves in the foot

82

Smashing the stack

® |[f we have control over a buffer on the stack, we can overwrite anything that
appears above it. Like what?

Smashing the stack

® |[f we have control over a buffer on the stack, we can overwrite anything that
appears above it. Like what?

® Other local variables

® Saved frame point (%ebp)

® Return address

® Function arguments

® Deeper stack frames (no frame by frame protection built in)

® ...Basically anything in process memory!

34

Smashing the stack — local variables

® \Why might overwriting local variables or

function arguments be bad?

® Sort of depends on what the program is
doing, but if an argument contains
something sensitive... you're hosed

® Typical problem cases

® Variables that store result of a security check

® Variables used in checks (e.g., bu

Ter sizes)

® Data pointers (can corrupt writable stuff)

® Function pointers (can direct control

transter)

void doValidStuff (int isValid, char¥*

inp)

{

char username|[8];
strcpy (username, inp);
1f check (username, i1isValid) {

}

// do some stuff

Smashing the stack — control data

® The big one: the return address
® Upon function return, control is transferred to an attacker chosen address
® This enables what we call arbitrary code execution (the worst kind)

® Attackers can re-direct to their own code, or code that already exists in
the process (e.g., libc)

® Reminder: theres nothing that distinguishes data from code, so all data
(including input) will be interpreted as code it processor tries to transtfer
control there

® Aka: game over, you're owned

85

86

What's the worst thing we could put in a buffer?

® From a control flow perspective, it's shellcode
® Aka, code that spawn a shell

® \When manipulating the return address, have it return to the beginning
instruction of the shellcode

® |f you do that, you can run anything with the same privileges as the victim
process

® Aka; download malware, spawn new processes, read + exfiltrate any
potentially privileged files... the harms are vast and many

87

Spawning shellcode

® How does one spawn a shell?

® Just need to call execve with the right arguments

e execve (“/bin/sh”, argv, NULL)

® |[n “Smashing the Stack for Fun and Profit,” Aleph One composes shellcode

that can work with no null bytes (aka suitable tfor smashing the stack)... worth
a read!

88

A simple buffer overflow strategy

® |dentify a buffer overflow vulnerability (i.e., uses an unsafe string function)
® Place some shellcode in a buffer
® Find a way to overrun the bufter to modity the return address

® Modify return address to the bufter's address in memory (where you placea
the shellcode)

® Profit!

You will get lots of experience doing this in PA2.

89

So let’s just fix all the bad string functions!

char *strncpy(char *dst, const char *src, size t len);

char *strncat (char *s, const char *append, size t count);
strn* family of functions attempts to remedy this problem

® |ntroduce a function parameter to specity the safe amount to copy
strncpy() copies at most len characters from src into dst

® |fsrcis less than len characters long, the remainder of dst is filled with null
bytes. Otherwise, dst is not terminated.

On surtace, these seem good, except....

90

strncpy

e char *strncpy(char *dst, const char *src, size t len);

e char *strncat (char *s, const char *append, size t count);
® strn* family of functions attempts to remedy this problem

® |ntroduce a function parameter to specity the safe amount to copy
® strncpy() copies at most len characters from src into dst

® |fsrcis less than len characters long, the remainder of dst is filled with null
bytes. Otherwise, dst is not terminated.

® On surface, these seem good, except....

91

strncpy failures

® Developers don't usually know how to use it correctly

® \Vulnerability in htpasswd. c in Apache 1.3

* strcpy (record,
strcat (record,
strcat (record, cpw) ;

® "Solution”

® S

crncpy (record,

strncat (record,

S

_LI'NCa

C (record,

user) ;

o I/ N
° ’

user, MAX STRING

\\://’ 1);

cpw, MAX STRI

NG

LE

L

T
N -
11

1)

1)

® Can write up to 2*(MAX_STRING_LEN - 1) bytes! Bad!

92

strncpy failures

void main (int argc, char **argv) {
char program name[256] ;
strncpy (program name, argv[0], 256);
f (program name) ;

}

® \What's wrong with this code?

93

strncpy failures

void main (int argc, char **argv) {
char program name[256] ;
strncpy (program name, argv[0], 256);
f (program name) ;

}

® \What's wrong with this code?

® program_name may not be null terminated... and when you hand that to
another function (maybe one you didn’t write) you could be hosead

® |n other words, strncpy breaks the data structure invariant of a string

® Extremely unrecommended in practice

94

Bottom line: strings in C kinda suck

* strncpy () /strncat () still problematic today
® They do not guarantee NULL termination
® The design forces the developer to keep track of residual buffer lengths

® Requires performing awkward arithmetic (len(x) - 1, anyone?) which... as we
all know, are very easy to get wrong

® There is no way to check if the source string is truncated, leading to all kinds
of annoying ambiguities

® |f you must manipulate strings in C, the str1* family are much safer

® Guarantees NULL termination and doesn’t require complex address arithmetic

95

Good news: it's not just strings

® C string functions get a bad rap... but lots of ways to overrun a butter
® Memcpy, pointer arithmetic, bad casts, etc.

e Ultimately, it's a side eftect of C's unsafe memory semantics... strings are
just the most common and easiest use case to understana

® You will get some exposure to pointer failures, integer overrun failures, etc.
in PAZ2!

96

Spotting Buffer Overflows
® Three primary things to look out for:

® Missing checks

® Avoidable checks

® \Wrong checks

97

Missing checks

® No test to make sure memory writes stay within bounds
® Examples —

® strcpy()

® gets|)

® Most of the examples we saw today....

98

Avoidable check

® The check to make sure that
memory stays within intended
bounds can be bypassed in some
way

® Fxample
® |ibpng png_handle_tRNS()
e 2004

® Good demonstration of how an
attacker can manipulate internal
state by providing “correct” input

(png_ptr->color type == PNG_COLOR _TYPE PALETTE)

{

}
{

(!(png_ptr->mode & PNG_HAVE PLTE))

png warning(png_ptr, "Missing PLTE before tRNS");

(length > png _ptr->num palette)

png warning(png _ptr, "Incorrect tRNS chunk length");
png crc_skip(png_ptr, length);

99

Avoidable check

® Sometimes, the check comes too
late...

® \What's the problem here?

BUFLEN 20

void foo(char *s)

1

char buf|[BUFLEN];

strcpy(buf, s);
(strlen(buf) >= BUFLEN)

Wrong check

® The test to check it memory is in
bounds is just wrong

/%

. * Join the two strings together, ensuring that the right thing
® Very easy tO dO! O'H:—by—one errors In *x happens if the last component is empty, or the dirname is root.
%/
COde. L. nOt t“Vla‘ if (resolved[0] == '/' && resolved[1] == '\0@")

rootd = 1;
else
. . rootd = 0;
® Especially accounting for null bytes
if (kwbuf) {
if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

® Suspicious arithmetic is usually a L
culprit... }

if (rootd == 0)
(void)strcat(resolved, "/");

(void)strcat(resolved, wbuf);

® Here's an example...
® OpenBSD
e 2003

100

Fundamental principle of buffer overflows

e Buffer overflows exist because the runtime
system mixes code and data.

® \We'll see this time and time again in this class...

101

Addressing buffer overflows

® Best way to avoid these bugs is to not have them in the first place

® |f you can, avoid C/C++ for systems programming. Use a memory-safe language
instead (Rust, Go)

® Train developers to understand these bugs and their ramifications (can only really
get you so ftar)

® Finding bugs is a must

® Manual code review, static analysis, fuzzing, etc., — this is a whole subfield of
computer security

® Or... we can make the bugs harder to exploit

® More on this in two lectures (AppSec defenses)
102

Next time...

® \We get even more in the weeds

® Format strings, integer overflows, and return-oriented programming (one of
the coolest attacks ever, IMO, the original paper is from a UCSD faculty
member)

® PA1 is due on Thursday! See discussion, Piazza, etc. for more

® Good luck!

103

