
CSE127, Computer Security
Control flow vulnerabilities and buffer overflows

Housekeeping
General course things to know

• PA1 due Thursday by 1/15 at 11:59

• Hopefully by now you have set up the infrastructure needed for PA1, if not, no
time like the present

• Do not forget to submit your AI attestation!

• Due 1/16 at 11:59

• #FinAid Canvas quiz: https://canvas.ucsd.edu/courses/71475/quizzes/238979,
reminder to do this!

• PA2 releases Friday at midnight, due 1/27 at 11:59
2

https://canvas.ucsd.edu/courses/71475/quizzes/238979

Previously on CSE127…

• We talked about C.I.A., threat modeling, and the adversarial mindset

• Question: How can we apply these concepts to application areas we care
about? Like software, web, etc?

3

Today’s lecture – Control flow vulnerabilities and buffer overflows
Learning Objectives

• Understand basic software exploits in programs

• Understand how buffer overflow vulnerabilities can be exploited, with
specifics of x86-32bit and C

• Identify common buffer overflow vulnerability patterns in code and assess
their impact

• Learn best practices for avoiding buffer overflow vulnerabilities during
implementation

4

Software Security

5

When is a program considered secure?
• Definition: When it does exactly what it should.

• What are some issues with this definition?

6

When is a program considered secure?
• Definition: When it does exactly what it should.

• What are some issues with this definition?

• How do we know what a program is supposed to do?

• Somebody tells us (so we have to trust them)

• We write the code ourselves (but requires significant trust of every aspect of
the system stack)

• We have access to the formal specification (and we actually choose to read
it)

7

When is a program considered secure?
• Better definition: A program is secure when it doesn’t do bad things

• Much easier to specify a list of “bad” things, here are some examples:

• Delete or corrupt important files

• Crash the system

• Send passwords over the Internet

• Send threatening emails to Deepak about his podcast policy

• Unfortunately, software can be mostly good, but occasionally be made to do
bad things — do we still consider it secure?

8

Weird machines
• Complex software almost always contained

unintended functionality when the input
changes

• We call this artifact “weird”

• An exploit is a mechanism where an attacker
can trigger unintended functionality in the
system; e.g., “programming” the weird
machine

• Security requires understanding both intended
and unintended functionality in implementation

• Developers could miss things

• Attackers could be clever
9

https://en.wikipedia.org/wiki/Weird_machine

What is a software vulnerability?
• A bug in a software program that allows an unprivileged user capabilities that

should be denied to them

• What security property does this violate?

10

What is a software vulnerability?
• A bug in a software program that allows an unprivileged user capabilities that

should be denied to them

• What security property does this violate?

• Most classic and important vulnerabilities violate what’s called “control flow
integrity”

11

What is a software vulnerability?
• A bug in a software program that allows an unprivileged user capabilities that

should be denied to them

• What security property does this violate?

• Most classic and important vulnerabilities violate what’s called “control flow
integrity”

• Attacker can run code of their choosing on your computer.

• Usually involves violating assumptions of the programming language or
underlying run-time system (including OS, hardware assumptions!)

12

What are the exploits we’re discussing today?
• Our threat model

• Victim code is handling input that comes across a security boundary. When
might this happen in real life?

13

What are the exploits we’re discussing today?
• Our threat model

• Victim code is handling input that comes across a security boundary. When
might this happen in real life?

• PDF processing, word processing, web browsing… basically all user-
facing software must interact across a security boundary

14

What are the exploits we’re discussing today?
• Our threat model

• Victim code is handling input that comes across a security boundary. When
might this happen in real life?

• PDF processing, word processing, web browsing… basically all user-
facing software must interact across a security boundary

• We want to protect integrity and confidentiality of internal data from being
compromised by malicious users

• Today’s primary example: buffer overflow

• Provide input that “overflows” the memory a program has allocated for it

15

Programs, Functions, Memory,
Assembly

16

A rapid refresher
• What is a function?

• What is a stack?

• What is a call stack? (aka function stack?)

• What are CPU registers?

• What are some important, special registers used for handling control flow?

17

A rapid refresher
• What is a function?

• Self contained block of code that performs a specific task… notably, can be
called by other functions

• What is a stack?

• What is a call stack? (aka function stack?)

• What are CPU registers?

• What are some important, special registers used for handling control flow?

18

A rapid refresher
• What is a function?

• What is a stack?

• Data structure that follows a LIFO strategy (last-in, first-out).

• What is a call stack? (aka function stack?)

• What are CPU registers?

• What are some important, special registers used for handling control flow?

19

A rapid refresher
• What is a function?

• What is a stack?

• What is a call stack? (aka function stack?)

• Data structure that tracks active functions in a program to manage function
calls, local variables, and return addresses

• What are CPU registers?

• What are some important, special registers used for handling control flow?

20

A rapid refresher
• What is a function?

• What is a stack?

• What is a call stack? (aka function stack?)

• What are CPU registers?

• Processor-enabled fast storage for temporarily holding data, instructions,
addresses, values, etc.

• 6 “general-purpose” registers in x86: EAX, EBX, ECX, EDX, ESI, EDI

• What are some important, special registers used for handling control flow?

21

A rapid refresher
• What is a function?

• What is a stack?

• What is a call stack? (aka function stack?)

• What are CPU registers?

• What are some important, special registers used for handling control flow?

• Program counter (EIP), Stack pointer (ESP), Frame (or base) pointer (EBP)

• These keep track of function stacks and where the program should execute
from

22

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax

23

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax

24

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax (adds 0x10 to eax)

• mov %eax, %edx

25

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax (adds 0x10 to eax)

• mov %eax, %edx (copies value of %eax into %edx)

• push %eax

26

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax (adds 0x10 to eax)

• mov %eax, %edx (copies value of %eax into %edx)

• push %eax (pushes the value of %eax onto stack and updates %esp)

• call $0x12345

27

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax (adds 0x10 to eax)

• mov %eax, %edx (copies value of %eax into %edx)

• push %eax (pushes the value of %eax onto stack and updates %esp)

• call $0x12345 (calls function at this address updating %eip)

• jmp $0x12345

28

x86 refresher
• What do the following assembly instructions do? (Using AT&T syntax)

• mov 0x34, %eax (moves 0x34 into eax)

• add 0x10, %eax (adds 0x10 to eax)

• mov %eax, %edx (copies value of %eax into %edx)

• push %eax (pushes the value of %eax onto stack and updates %esp)

• call $0x12345 (calls function at this address updating %eip)

• jmp $0x12345 (moves instruction pointer to this address)

29

How is process memory laid out? (Linux 32-bit)
• Stack

• Local variables, call stack

• Heap

• Dynamically created variables; malloc,
new, etc.

• Data segment (static variables, global
variables

• .data, .bss

• Text segment

• Code has to also exist somewhere
30

C Arrays

31

• What is an array?

• Contiguous block of memory of a fixed
size.

• How much memory is allocated on stack for
these char buffers?

• 20 bytes (8 bytes for buffer1, 12 for buffer2)

• Will the program throw an error if you write
beyond the buffer?

• Why or why not?

C Arrays

32

• What is an array?

• Contiguous block of memory of a fixed
size.

• How much memory is allocated on stack for
these char buffers?

• 20 bytes (8 bytes for buffer1, 12 for buffer2)

• Will the program throw an error if you write
beyond the buffer?

• Why or why not?

C Arrays

33

• What is an array?

• Contiguous block of memory of a fixed
size.

• How much memory is allocated on stack for
these char buffers?

• 20 bytes (8 bytes for buffer1, 12 for buffer2)

• Will the program throw an error if you write
beyond the buffer?

• Why or why not?

C Arrays

34

• What is an array?

• Contiguous block of memory of a fixed
size.

• How much memory is allocated on stack for
these char buffers?

• 20 bytes (8 bytes for buffer1, 12 for buffer2)

• Will the program throw an error if you write
beyond the buffer?

• Why or why not?

C Arrays

35

• What is an array?

• Contiguous block of memory of a fixed
size.

• How much memory is allocated on stack for
these char buffers?

• 20 bytes (8 bytes for buffer1, 12 for buffer2)

• Provocation: Will the program throw an error
if you write beyond the buffer?

• Why

Understanding function calls — callers and callees

36

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Understanding function calls — callers and callees

37

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Understanding function calls — callers and callees

38

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Understanding function calls — callers and callees

39

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Understanding function calls — callers and callees

40

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Understanding function calls — callers and callees

41

• Two functions: main (caller) and function (callee)

• Who is responsible for passing in function
arguments?

• Caller

• How does function know where to return to
after it’s done?

• Caller pushes %eip as return address

• Where is the return address stored?

• On the stack!

Function Stack Organization

42

• Stacks are divided into frames

• Each frame stores locals + args to called
functions

• call instruction will push the return address
(e.g., where you were previously) onto the stack

• %esp points to the top of the stack

• x86: stack grows down (from high to low
addresses)

• %ebp points to the caller’s frame on the stack
(frame pointer)

https://en.wikipedia.org/wiki/Call_stack

Caller / Callee Responsibilities during call

43

• What are the responsibilities of the caller?

• Pass arguments, save return address, call new function

• What is the responsibility of the callee?

• Save old FP, set FP = SP, allocate stack space for local storage

Caller / Callee Responsibilities during ret

44

• What does the callee do when returning?

• Pop local storage

• Set SP = FP

• Pop frame pointer

• Pop return address and ret

• What does the caller do when returning?

• Pop arguments and continue

example.c – calling

45

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

46

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

SP FP

main

example.c – calling

47

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

local variables

SP

FP

main

example.c – calling

48

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

foo’s arguments (a, b)

local variables

SP

FP

main

example.c – calling

49

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

return address

foo’s arguments (a, b)

local variables

SP

FP

main

example.c – calling

50

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

main’s FP

return address

foo’s arguments (a, b)

local variables

main

SP

FP

foo

example.c – calling

51

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

main’s FP

return address

foo’s arguments (a, b)

local variables

main

SP FP
foo

example.c – calling

52

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

local variables (buf1)

main’s FP

return address

foo’s arguments (a, b)

local variables

main

SP

FP
foo

example.c – calling

53

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

local variables (buf1)

main’s FP

return address

foo’s arguments (a, b)

local variables

main

SP

FP
foo

example.c – returning

54

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

main’s FP

return address

foo’s arguments (a, b)

local variables

main

SP FP
foo

example.c – returning

55

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

return address

foo’s arguments (a, b)

local variables

main

SP

FP

foo

example.c – returning

56

void foo (int a, int b) {

 char buf1[16];

}

int main() {

 foo(3,6);

}

stolen w/ love from UMich

foo’s arguments (a, b)

local variables

main
SP

foo

example.c – returning

FP

57

void foo (int a, int b) {

 char buf1[16];

}

foo:

 push %ebp
 movl %esp, %ebp
 sub $0x10, %esp
 leave
 ret

stolen w/ love from UMich

example.c (x86)
int main() {

 foo(3,6);

}

main:

 push %ebp
 movl %esp, %ebp
 push $0x06
 push $0x03
 call foo
 leave
 ret

58

void foo (int a, int b) {

 char buf1[16];

}

foo:

 push %ebp
 movl %esp, %ebp
 sub $0x10, %esp
 leave
 ret

stolen w/ love from UMich

example.c (x86)
int main() {

 foo(3,6);

}

main:

 push %ebp
 movl %esp, %ebp
 push $0x06
 push $0x03
 call foo
 leave
 ret

59

void foo (int a, int b) {

 char buf1[16];

}

foo:

 push %ebp
 movl %esp, %ebp
 sub $0x10, %esp
 leave
 ret

stolen w/ love from UMich

example.c (x86)
int main() {

 foo(3,6);

}

main:

 push %ebp
 movl %esp, %ebp
 push $0x06
 push $0x03
 call foo
 leave
 ret mov %ebp, %esp

pop %ebp

60

void foo (int a, int b) {

 char buf1[16];

}

foo:

 push %ebp
 movl %esp, %ebp
 sub $0x10, %esp
 leave
 ret

stolen w/ love from UMich

example.c (x86)
int main() {

 foo(3,6);

}

main:

 push %ebp
 movl %esp, %ebp
 push $0x06
 push $0x03
 call foo
 leave
 ret

pop %eip

61

void foo (int a, int b) {

 char buf1[16];

}

foo:

 push %ebp
 movl %esp, %ebp
 sub $0x10, %esp
 leave
 ret

stolen w/ love from UMich

example.c (x86)
int main() {

 foo(3,6);

}

main:

 push %ebp
 movl %esp, %ebp
 push $0x06
 push $0x03
 call foo
 leave
 ret

Buffer Overflows

62

63

void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

int main() {

 char str = “1234567890AB”;
 foo(str);

}

stolen w/ love from UMich

Buffer overflow example

Where is the problem with this code?

64

void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

int main() {

 char str = “1234567890AB”;
 foo(str);

}

stolen w/ love from UMich

Buffer overflow example

Buffer is not big enough to hold
12 bytes of input!

65

int main() {

 char str = “1234567890AB”;
 foo(str);

}

main:
 push %ebp
 mov %esp, %ebp
 push str_ptr
 call foo
 leave
 ret

stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

str_ptr: “1234567890AB”

66

int main() {

 char str = “1234567890AB”;
 foo(str);

}

main:
 push %ebp
 mov %esp, %ebp
 push str_ptr
 call foo
 leave
 ret

stolen w/ love from UMich

Buffer overflow example

prev FP

str_ptr: “1234567890AB”

67

int main() {

 char str = “1234567890AB”;
 foo(str);

}

main:
 push %ebp
 mov %esp, %ebp
 push str_ptr
 call foo
 leave
 ret

stolen w/ love from UMich

Buffer overflow example

str_ptr

prev FP

str_ptr: “1234567890AB”

68

int main() {

 char str = “1234567890AB”;
 foo(str);

}

main:
 push %ebp
 mov %esp, %ebp
 push str_ptr
 call foo
 leave
 ret

stolen w/ love from UMich

Buffer overflow example

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

69 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

70 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

main FP

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

71 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

72 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

73 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

buf_ptr

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

74 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

buf_ptr

str_ptr

buffer (4 bytes)

main FP

return address

str_ptr

prev FP

str_ptr: “1234567890AB”

75 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

buf_ptr

str_ptr

1234

5678

90AB

str_ptr

prev FP

str_ptr: “1234567890AB”

76 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

90AB

str_ptr

prev FP

str_ptr: “1234567890AB”

77 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

90AB

str_ptr

prev FP

str_ptr: “1234567890AB”

78 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

90AB

str_ptr

prev FP

str_ptr: “1234567890AB”

What happens here?

79 stolen w/ love from UMich

Buffer overflow example
void foo (char *str) {

 char buffer[4];
 strcpy(buffer, str);

}

foo:
 push %ebp
 mov %esp, %ebp
 sub $0x4, %esp
 push 0x8(%ebp)
 lea -0xc(%ebp),%edx
 push %edx
 call strcpy
 leave
 ret

90AB

str_ptr

prev FP

str_ptr: “1234567890AB”

So… what is a buffer overflow?
• An anomaly that occurs when a program writes data beyond the boundary of a

buffer

• Archetypal software vulnerability

• Ubiquitous in system software (C/C++)

• OSes, web servers, web browsers, embedded systems, IoT devices…

• If your program crashes with memory faults, you probably have a buffer
overflow vulnerability

• A basic core concept that enables a broad range of possible attacks

• Sometimes, a single byte is all an attacker needs
80

Why do buffer overflows exist?
• One reason — no automatic bounds checking in C/C++. Developers need to

know what they are doing and check access bounds when necessary.

• Another reason: Default C standard library functions make it very easy to go
past array bounds

• Most standard string manipulation functions; gets(), strcpy(),
strcat(), all write to the destination buffer until they encounter a
termination null byte in the input.

• Deepak’s version: If you hand someone a footgun, they’ll probably shoot
themselves in the foot

81

Smashing the stack
• If we have control over a buffer on the stack, we can overwrite anything that

appears above it. Like what?

• Other local variables

• Saved frame point (%ebp)

• Return address

• Function arguments

• Deeper stack frames (no frame by frame protection built in)

• …Basically anything in process memory!

82

Smashing the stack
• If we have control over a buffer on the stack, we can overwrite anything that

appears above it. Like what?

• Other local variables

• Saved frame point (%ebp)

• Return address

• Function arguments

• Deeper stack frames (no frame by frame protection built in)

• …Basically anything in process memory!

83

Smashing the stack — local variables
• Why might overwriting local variables or

function arguments be bad?

• Sort of depends on what the program is
doing, but if an argument contains
something sensitive… you’re hosed

• Typical problem cases

• Variables that store result of a security check

• Variables used in checks (e.g., buffer sizes)

• Data pointers (can corrupt writable stuff)

• Function pointers (can direct control
transfer)

84

void doValidStuff (int isValid, char*
inp)

{

 char username[8];
 strcpy(username, inp);
 if check(username, isValid) {
 // do some stuff
 }

}

Smashing the stack — control data
• The big one: the return address

• Upon function return, control is transferred to an attacker chosen address

• This enables what we call arbitrary code execution (the worst kind)

• Attackers can re-direct to their own code, or code that already exists in
the process (e.g., libc)

• Reminder: theres nothing that distinguishes data from code, so all data
(including input) will be interpreted as code if processor tries to transfer
control there

• Aka: game over, you’re owned
85

What’s the worst thing we could put in a buffer?
• From a control flow perspective, it’s shellcode

• Aka, code that spawn a shell

• When manipulating the return address, have it return to the beginning
instruction of the shellcode

• If you do that, you can run anything with the same privileges as the victim
process

• Aka; download malware, spawn new processes, read + exfiltrate any
potentially privileged files… the harms are vast and many

86

Spawning shellcode
• How does one spawn a shell?

• Just need to call execve with the right arguments

• execve(“/bin/sh”, argv, NULL)

• In “Smashing the Stack for Fun and Profit,” Aleph One composes shellcode
that can work with no null bytes (aka suitable for smashing the stack)… worth
a read!

87

A simple buffer overflow strategy
• Identify a buffer overflow vulnerability (i.e., uses an unsafe string function)

• Place some shellcode in a buffer

• Find a way to overrun the buffer to modify the return address

• Modify return address to the buffer’s address in memory (where you placed
the shellcode)

• Profit!

You will get lots of experience doing this in PA2.

88

So let’s just fix all the bad string functions!
• char *strncpy(char *dst, const char *src, size_t len);

• char *strncat(char *s, const char *append, size_t count);

• strn* family of functions attempts to remedy this problem

• Introduce a function parameter to specify the safe amount to copy

• strncpy() copies at most len characters from src into dst

• If src is less than len characters long, the remainder of dst is filled with null
bytes. Otherwise, dst is not terminated.

• On surface, these seem good, except….

89

strncpy
• char *strncpy(char *dst, const char *src, size_t len);

• char *strncat(char *s, const char *append, size_t count);

• strn* family of functions attempts to remedy this problem

• Introduce a function parameter to specify the safe amount to copy

• strncpy() copies at most len characters from src into dst

• If src is less than len characters long, the remainder of dst is filled with null
bytes. Otherwise, dst is not terminated.

• On surface, these seem good, except….

90

strncpy failures
• Developers don’t usually know how to use it correctly

• Vulnerability in htpasswd.c in Apache 1.3

• strcpy(record, user);
strcat(record, “:”);
strcat(record,cpw);

• “Solution”

• strncpy(record, user, MAX_STRING_LEN - 1);
strncat(record, “:”, 1);
strncat(record, cpw, MAX_STRING_LEN - 1);

• Can write up to 2*(MAX_STRING_LEN - 1) bytes! Bad!

91

strncpy failures
void main (int argc, char **argv) {
 char program_name[256];
 strncpy(program_name, argv[0], 256);
 f(program_name);
}

• What’s wrong with this code?

92

strncpy failures
void main (int argc, char **argv) {
 char program_name[256];
 strncpy(program_name, argv[0], 256);
 f(program_name);
}

• What’s wrong with this code?

• program_name may not be null terminated… and when you hand that to
another function (maybe one you didn’t write) you could be hosed

• In other words, strncpy breaks the data structure invariant of a string

• Extremely unrecommended in practice

93

Bottom line: strings in C kinda suck
• strncpy()/strncat() still problematic today

• They do not guarantee NULL termination

• The design forces the developer to keep track of residual buffer lengths

• Requires performing awkward arithmetic (len(x) - 1, anyone?) which… as we
all know, are very easy to get wrong

• There is no way to check if the source string is truncated, leading to all kinds
of annoying ambiguities

• If you must manipulate strings in C, the strl* family are much safer

• Guarantees NULL termination and doesn’t require complex address arithmetic
94

Good news: it’s not just strings
• C string functions get a bad rap… but lots of ways to overrun a buffer

• Memcpy, pointer arithmetic, bad casts, etc.

• Ultimately, it’s a side effect of C’s unsafe memory semantics… strings are
just the most common and easiest use case to understand

• You will get some exposure to pointer failures, integer overrun failures, etc.
in PA2!

95

Spotting Buffer Overflows
• Three primary things to look out for:

• Missing checks

• Avoidable checks

• Wrong checks

96

Missing checks
• No test to make sure memory writes stay within bounds

• Examples —

• strcpy()

• gets()

• Most of the examples we saw today….

97

Avoidable check
• The check to make sure that

memory stays within intended
bounds can be bypassed in some
way

• Example

• libpng png_handle_tRNS()

• 2004

• Good demonstration of how an
attacker can manipulate internal
state by providing “correct” input

98

Avoidable check
• Sometimes, the check comes too

late…

• What’s the problem here?

99

Wrong check
• The test to check if memory is in

bounds is just wrong

• Very easy to do! Off-by-one errors in
code…. not trivial

• Especially accounting for null bytes

• Suspicious arithmetic is usually a
culprit…

• Here’s an example…

• OpenBSD

• 2003
100

Fundamental principle of buffer overflows
•Buffer overflows exist because the runtime

system mixes code and data.
• We’ll see this time and time again in this class…

101

Addressing buffer overflows
• Best way to avoid these bugs is to not have them in the first place

• If you can, avoid C/C++ for systems programming. Use a memory-safe language
instead (Rust, Go)

• Train developers to understand these bugs and their ramifications (can only really
get you so far)

• Finding bugs is a must

• Manual code review, static analysis, fuzzing, etc., — this is a whole subfield of
computer security

• Or… we can make the bugs harder to exploit

• More on this in two lectures (AppSec defenses)
102

Next time…
• We get even more in the weeds

• Format strings, integer overflows, and return-oriented programming (one of
the coolest attacks ever, IMO, the original paper is from a UCSD faculty
member)

• PA1 is due on Thursday! See discussion, Piazza, etc. for more

• Good luck!

103

