
CSE127, Computer Security
Course introduction, definitions, reflections on trusting trust

whoami

2

Deepak Kumar
Assistant Professor in CSE

undergrad grad postdoc

Background on me (research)

• I work primarily on applied computer security research, my research interests are in sociotechnical
security (computer security + human-computer interaction)

• Interests primarily in ways that technology + society interact, and where security or safety
problems arise (e.g., online harassment, mis/disinformation, AI generated deepfakes, trust on the
Internet, etc.)

• Mostly, I’m a data + systems guy…. e.g.,

• “What does the marketplace for nonconsensual sexual deepfake creation look like?”

• “How much toxic content there on Reddit, and what can we learn about attack patterns than
inform defenses?”

• “How can we build better defenses for journalists facing online harassment on social media?”

3

How’d I get into security?

• I took the UMich version of this class 11 years ago (Winter 2015)

• Two versions of my story (both are true)

• I’ve always been very interested in technology + society, and computer
security is a field that by definition gets to impact both of those interests

• I wanted to do computer architecture research in undergrad, but I didn’t get a
good enough grade. The security group was looking for students and I got an
A in the 127-equivalent, so they took me, and the rest is history

• Started in network security, moved my way towards more human-centered work

4

I also do other things…

5

What are we (UCSD) known for in security?
• Measurement (cybercrime, malware, spam, captchas, fraud, etc.)

• Defenses (threat intelligence, cyber hygiene, etc.)

• Embedded Security (hacking cars, voting machines, airplanes, credit card skimmers,
medical devices)

• Web security + PLsec (cookies, information flow, wasm runtime shenanigans)

• Intersection of crypto + security (turns out, implementing crypto is very hard)

• Lots of faculty here working on stuff — more here

• https://cryptosec.ucsd.edu

• http://sysnet.ucsd.edu

6

https://cryptosec.ucsd.edu
http://sysnet.ucsd.edu

Course Staff

7

Bella Jeong
TA

ljeong@ucsd.edu

Manan Patel
Tutor

mbp001@ucsd.edu

mailto:ljeong@ucsd.edu

5-Minute Introductions

8

• Find two other people in the classroom you’re sitting
nearby (ideally people you haven’t met)

• Write and send us an email introducing yourselves to us
(one per group is fine):

• Names, degree programs + year progress (e.g., junior,
senior)

• Why did you enroll in this class?

• What is something you do for fun?

• Attach a selfie!

• Send introductions to cse-127staff-g@ucsd.edu

mailto:cse-127staff-g@ucsd.edu

Let’s recap the last 5-minutes of your life

9

Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the
professor of the class

10

Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the
professor of the class

• He asked you to do a task that required some effort (and therefore took up
your precious time)

11

Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the
professor of the class

• He asked you to do a task that required some effort (and therefore took up
your precious time)

• He asked you to send a compilation of information about yourselves to a
random email address, including a picture!?

12

Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the
professor of the class

• He asked you to do a task that required some effort (and therefore took up
your precious time)

• He asked you to send a compilation of information about yourselves to a
random email address, including a picture!?

Why did you do that?

13

Security is all about trust
You can’t have security if you trust no one

14

Security is all about trust
You can’t have security if you trust no one

15

• With those same groups (no tricks this time), answer the following questions:

• What is security?

• What is computer security?

• What is trust?

Security is all about trust
You can’t have security if you trust no one

16

• With those same groups (no tricks this time), answer the following questions:

• What is security?

• What is computer security?

• What is trust?

Definitions: Security

17

• Merriam-Webster online dictionary:

• The quality or state of being secure: such as

• Free from danger : safety

• Freedom from fear or anxiety

• Freedom for the prospect of being laid off (job security)

Definitions: Security

18

• Merriam-Webster online dictionary:

• The quality or state of being secure: such as

• Free from danger : safety

• Freedom from fear or anxiety

• Freedom for the prospect of being laid off (job security)

• Note: Security is about freedom (from some entity, force, or otherwise)

Security is all about trust
You can’t have security if you trust no one

19

• With those same groups (no tricks this time), answer the following questions:

• What is security?

• What is computer security?

• What is trust?

Definitions: Computer Security

20

• Most of computer science is about functionality:
• UX/UI

• Architecture

• AI / ML development

• Operating Systems / Networking / Databases

• Compilers / PL

• Microarchitecture

• Computer security is not about functionality

• Computer security is the study of a computer system in the presence of an adversary

• Holistic property:

• “Software security is about integrating security practices into the way you build software, not

integrating security features into your code” – Gary McGraw, ex-VP of Synopsys

Security is all about trust
You can’t have security if you trust no one

21

• With those same groups (no tricks this time), answer the following questions:

• What is security?

• What is computer security?

• What is trust?

Security is all about trust
You can’t have security if you trust no one

22

Reflections on Trusting Trust
1984 Turing Award Lecture

23

Ken Thompson + Dennis Ritchie

Reflections on Trusting Trust
How do we run C programs?

24

C Program

Reflections on Trusting Trust
How do we run C programs?

25

C Program
Compiler Binary
(e.g., gcc, g++)

Reflections on Trusting Trust
How do we run C programs?

26

C Program
Compiler Binary
(e.g., gcc, g++)

hello world
application

What language is gcc written in?

27

What language is gcc written in?

28

Surprise! It’s C.

gcc compiles gcc

29

gcc source code
in C

gcc gcc binary

gcc compiles gcc
Simple function for parsing and escaping characters

30

gcc source code
in C

gcc gcc binary

char str[] = “Hello world\n”;

gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?

31

gcc source code
in C

gcc gcc binary

char str[] = “Hello world\v”;

gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?

32

gcc source code
in C

gcc gcc binary

char str[] = “Hello world\v”;

gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?

33

gcc source code
in C

gcc gcc binary

This will throw a compilation error.
Why?

gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?

34

gcc source code
in C

gcc gcc binary

We have to tell the C compiler about `\v` before
we can use `\v`

char str[] = “Hello world\v”;

gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?

35

gcc source code
in C

gcc gcc binary

Now, this will compile!

char str[] = “Hello world\v”;

If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries

36

some source code
in C

compile(s) compiles the next line of source code

If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries

37

some source code
in C

If I owned the C compiler, I could add logic that
introduces malicious bugs when certain patterns
appear, e.g., if trying to compile “login” program

If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries

38

login program
on UNIX

Evil GCC

Compromised
login binary that

allows
deepak:deepak
on all machines

If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries

39

… but this is very easy to detect if you read the C compiler code. Why?

login program
on UNIX

Evil GCC

Compromised
login binary that

allows
deepak:deepak
on all machines

If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed

40

some source code
in C

In addition to matching on login, I could also
match the C compiler itself, and compile in

both trojans

If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed

41

some source code
in C

In addition to matching login, I could also
match the C compiler itself, and compile in

both trojans

Checks if program is login, if so, returns backdoor

If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed

42

some source code
in C

In addition to matching login, I could also
match the C compiler itself, and compile in

both trojans

Checks if program is C compiler, if so,
returns backdoored version of C compiler

If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed

43

some source code
in C

GCC will return an evil version of login, and an evil
version of the C compiler itself

So here’s what happens…

44

• You install the double-trojaned version as the compiler on a machine

• You can change the source code of gcc back to the non-malicious version

• Anytime someone compiles login or even gcc, they’ll still get the backdoor even when
it’s nowhere to be found in the source code.

• It’s the exact same as 11 only being needed one time, after that, you can use ‘\v’

• Moral: You can’t trust code that you did not totally create yourself (aka, everything)

• Compilers, assemblers, loaders, even hardware microcode

• Deepak’s extension: You can’t have security without trust

This totally happens in real life
XZ Utils Backdoor – CVE-2024-3094

45

• In February 2024, a Microsoft employee found a backdoor in XZ, a popular
compressor for Unix-like operating systems

• The backdoor was found in compressed test files that enabled full remote-
code execution on the machine using the compromised xz via sshd

• The backdoor was introduced in the supply chain – a developer (Jia Tan) who
contributed to XZ for years introduced the patch in obfuscated test files

• Primary guess right now is nation-state, but we’re not sure

• Provocation: Do you trust that every piece of software on your machine has not
been tampered with? Why?

My take on computer security

46

• Security is not a “thing you do”, it is a way of life

• We call this the “adversarial mindset:” how do you think like an attacker so
you can be ready to 1) find problems or 2) fix them before they happen?

• Some paranoia is good, maximal paranoia is worthless; we want a sweet
spot, called rational paranoia

• Security is always in relation to to the threat

• What does it mean to “be secure?” Against what? With what assumptions?

Course Ethos + Logistics

47

Course info

• Website: https://cseweb.ucsd.edu/classes/wi26/cse127-a/

• Slides posted right before class so you can follow along

• Canvas: https://canvas.ucsd.edu/courses/71475

• Gradescope for grading

• Piazza for communication (avoid email if you can)

• Office Hours

• Tuesday 11 – 12pm (or by appointment), CSE 3248

48

https://cseweb.ucsd.edu/classes/wi26/cse127-a/

Goals and non-goals of this course
This is a hands-on course

• Goals

• Provide a solid foundation of security concepts, applied to concrete topic areas and hands-on PAs

• Learn the security mindset

• How to think like an attacker / security engineer

• Looking at systems beyond intended functionality

• Understanding how things work, how they break, and how to fix them

• Non-goals

• A deep dive into any one subarea (this is a breadth course)

• Review of all security mechanisms (we cannot cover everything)

49

This course, broadly
Topic areas

50

• We’ll cover the following topic areas as best we can in ten weeks:

• Application security

• Systems security

• Web security

• Network security

• Cryptography

• Sociotechnical security

Course materials

51

• No textbook for the class, but here’s some I recommend anyway if you’re
curious…

• Security Engineering, by Ross Anderson

• Cryptography Engineering, by Niels Ferguson, Bruce Schneier, and
Tadayoshi Kohno

• Other readings I’ll provide as we go on the course website for additional
context

Structure + Grading of this course

• Programming Assignments (40% of your grade)

• Midterm (25% of your grade)

• Final (35% of your grade)

52

Programming Assignments

53

• You’ll get hands-on experience deploying real attacks and defenses in the
following domains:

• Application Security (PA1, PA2)

• Web Security (PA3)

• Network Security (PA4)

• Cryptography (PA5)

• Schedule of release + due dates are already available on website

• This class moves fast. There is always an active PA. PA1 is already out!

Programming Assignments

54

• Programming assignments MAY be done in teams (if you wish); teams do not
need to stay the same between PAs

• PA1 is 4% of your grade (more of a PA0…), the remainder are 9% of your
grade each

• Students MUST NOT collaborate with anyone outside of their partner; any
unsanctioned group work is academic integrity violation and will be reported

What you will need to know for PAs

55

• We cover a wide spectrum of tools, languages, and concepts — C, assembly,
Python, JavaScript, Networking…

• I’ll cover the high levels of these in class, but you need to be prepared to
learn stuff on your own

• E.g., I’m not teaching you x86 32-bit assembly or C or JavaScript

Rules for PAs

56

• PAs are due at 11:59:59 PT on the due date listed

• You get two late days on PAs (both teammates need to have a late day to use otherwise you don’t get one)
— these are applied automatically

• Regrades are very much the exception, not the norm

• We reserve the right to completely regrade your assignments :)

• NO CHEATING

• Read and understand the UCSD policy on academic integrity

• https://academicintegrity.ucsd.edu

• Not OK to copy, paraphrase, translate, etc. somebody else’s work

• If you not sure if something is cheating, assume it is until you ask about it

https://academicintegrity.ucsd.edu

AI / LLM Policy

57

• Feel free to use AI / LLMs to help you with your PAs.

• I have found these tools to be marginally useful in these PAs, outright wrong at other times… use
at your own peril

• You must attest to your usage of AI in Gradescope. Otherwise, it’s an academic integrity
violation (yes, we are checking).

• Note: Exams (which remember are 60% of your grade) will test both lecture material and PA material.

• If you find a way to use AI to do no metacognition, congrats, but you’ll probably do quite poorly
on exams (and therefore, do poorly in the course)

• Plus, you’re here at UCSD to learn how to do things on your own…

• My recommendation? Don’t use AI at all, but you’re all adults, so up to you

A word on ethics…

58

• In this class, you will learn how to attack the security of various computer programs and
systems

• We learn attacks because understanding them is crucial to building defenses against those
attacks

• You are obligated to use this knowledge ethically

• You MUST NOT attack others

• In addition to being unethical, it’s likely a felony per the Computer Fraud and Abuse
Act (CFAA)

• If you feel like testing your chops, there are lots of sanctioned ways (see capture the flag
competitions)

Exams

59

• Two exams, a midterm (week 6, in class) and a final (during finals week)

• Midterm 25%, Final 35%

• Structure of both is very similar

• Litany of multiple choice questions primarily focused on lecture

• Broader “PA”-style questions that build on what you did for the PA but with
different inputs / outputs

• Final is comprehensive but PA questions will trend towards PA4 and PA5

Attendance, Podcasting, Participation

60

• Attendance is not mandatory for this course, but I think you’ll get the most out of it
if you attend in person

• Podcast will be made available, but only for a week following the lecture. No
exceptions will be made to this rule.

• Why? I want to support flexibility in learning (I know it’s 8am) while also
preventing cramming

• I ask a lot of questions in class as a mechanism for learning, so be prepared for that

• If you want to use a laptop during lecture, that’s fine, but please sit in the back (it’s
distracting to other students and often to me)

Course Vibes
Community-centric learning

• The classroom is community

• Get to know one another! The course is only made better when you know
each other

• Come prepared with questions, comments, concerns, thoughts, etc.

• Discussions should be respectful, understanding everyone is here to
contribute and to learn

• This is my first time teaching CSE 127

• There will be some bugs. Thanks for your patience as we figure them out.
61

Immediate Logistics

• PA1 is released! It is a basic primer on gdb and x86 — both of which you will need to
succeed in PA2.

• Due on 1/15 at 11:59:59

• Find a teammate, get to work! Piazza has the teammate search feature open should you
need to coordinate.

• I view this more of a PA0… not too challenging (imo) and should get you used to the way
we submit and turn in assignments for the quarter

• Submission on Gradescope via Canvas

• Complete the #FinAid survey on Canvas (necessary to support those w/ financial aid needs)

• https://canvas.ucsd.edu/courses/71475/quizzes/238979
62

https://canvas.ucsd.edu/courses/71475/quizzes/238979

Next time…

• We’ll talk about risk and threat modeling, and a general approach to
analyzing and investigating computer security

• Worth reading Ken Thompson’s reflections on trusting trust (it’s just 3-
pages) to solidify the trojan we talked about in class today

• Next week, we’ll start with Application + Systems Security (buffer overflow
attacks, etc.)

• Discussions begin next Monday and will be more hands on with the PAs.

63

