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Background on me (research)

• I work primarily on applied computer security research, my research interests are in sociotechnical 
security (computer security + human-computer interaction) 

• Interests primarily in ways that technology + society interact, and where security or safety 
problems arise (e.g., online harassment, mis/disinformation, AI generated deepfakes, trust on the 
Internet, etc.)  

• Mostly, I’m a data + systems guy…. e.g., 

• “What does the marketplace for nonconsensual sexual deepfake creation look like?”    

• “How much toxic content there on Reddit, and what can we learn about attack patterns than 
inform defenses?” 

• “How can we build better defenses for journalists facing online harassment on social media?”
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How’d I get into security?

• I took the UMich version of this class 11 years ago (Winter 2015) 

• Two versions of my story (both are true) 

• I’ve always been very interested in technology + society, and computer 
security is a field that by definition gets to impact both of those interests 

• I wanted to do computer architecture research in undergrad, but I didn’t get a 
good enough grade. The security group was looking for students and I got an 
A in the 127-equivalent, so they took me, and the rest is history 

• Started in network security, moved my way towards more human-centered work
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I also do other things…
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What are we (UCSD) known for in security?
• Measurement (cybercrime, malware, spam, captchas, fraud, etc.) 

• Defenses (threat intelligence, cyber hygiene, etc.) 

• Embedded Security (hacking cars, voting machines, airplanes, credit card skimmers, 
medical devices) 

• Web security + PLsec (cookies, information flow, wasm runtime shenanigans) 

• Intersection of crypto + security (turns out, implementing crypto is very hard) 

• Lots of faculty here working on stuff — more here 

• https://cryptosec.ucsd.edu 

• http://sysnet.ucsd.edu
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Course Staff
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5-Minute Introductions
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• Find two other people in the classroom you’re sitting 
nearby (ideally people you haven’t met) 

• Write and send us an email introducing yourselves to us 
(one per group is fine): 

• Names, degree programs + year progress (e.g., junior, 
senior) 

• Why did you enroll in this class? 

• What is something you do for fun? 

• Attach a selfie! 

• Send introductions to cse-127staff-g@ucsd.edu

mailto:cse-127staff-g@ucsd.edu


Let’s recap the last 5-minutes of your life
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Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the 
professor of the class
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Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the 
professor of the class 

• He asked you to do a task that required some effort (and therefore took up 
your precious time)
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Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the 
professor of the class 

• He asked you to do a task that required some effort (and therefore took up 
your precious time)  

• He asked you to send a compilation of information about yourselves to a 
random email address, including a picture!?
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Let’s recap the last 5-minutes of your life

• Some guy (me) who most of you just met stood up and claimed to be the 
professor of the class 

• He asked you to do a task that required some effort (and therefore took up 
your precious time)  

• He asked you to send a compilation of information about yourselves to a 
random email address, including a picture!? 

Why did you do that?
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Security is all about trust
You can’t have security if you trust no one
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Security is all about trust
You can’t have security if you trust no one
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• With those same groups (no tricks this time), answer the following questions: 

• What is security? 

• What is computer security? 

• What is trust?



Security is all about trust
You can’t have security if you trust no one
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• What is security? 

• What is computer security? 

• What is trust?



Definitions: Security
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• Merriam-Webster online dictionary: 

• The quality or state of being secure: such as 

• Free from danger : safety 

• Freedom from fear or anxiety 

• Freedom for the prospect of being laid off (job security)



Definitions: Security

18

• Merriam-Webster online dictionary: 

• The quality or state of being secure: such as 

• Free from danger : safety 

• Freedom from fear or anxiety 

• Freedom for the prospect of being laid off (job security) 

• Note: Security is about freedom (from some entity, force, or otherwise)



Security is all about trust
You can’t have security if you trust no one
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• With those same groups (no tricks this time), answer the following questions: 

• What is security? 

• What is computer security? 

• What is trust?



Definitions: Computer Security
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• Most of computer science is about functionality: 
• UX/UI 

• Architecture 

• AI / ML development 

• Operating Systems / Networking / Databases 

• Compilers / PL 

• Microarchitecture 

• Computer security is not about functionality 

• Computer security is the study of a computer system in the presence of an adversary 

• Holistic property: 

• “Software security is about integrating security practices into the way you build software, not 

integrating security features into your code” – Gary McGraw, ex-VP of Synopsys



Security is all about trust
You can’t have security if you trust no one
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• With those same groups (no tricks this time), answer the following questions: 

• What is security? 

• What is computer security? 

• What is trust?



Security is all about trust
You can’t have security if you trust no one
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Reflections on Trusting Trust
1984 Turing Award Lecture
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Ken Thompson + Dennis Ritchie



Reflections on Trusting Trust
How do we run C programs?
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Reflections on Trusting Trust
How do we run C programs?
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C Program
Compiler Binary 
(e.g., gcc, g++)



Reflections on Trusting Trust
How do we run C programs?
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C Program
Compiler Binary 
(e.g., gcc, g++)

hello world 
application



What language is gcc written in?

27



What language is gcc written in?
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Surprise! It’s C.



gcc compiles gcc
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gcc source code 
in C

gcc gcc binary



gcc compiles gcc
Simple function for parsing and escaping characters
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gcc source code 
in C

gcc gcc binary

char str[] = “Hello world\n”;



gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?
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gcc source code 
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gcc gcc binary

char str[] = “Hello world\v”;



gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?
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gcc source code 
in C

gcc gcc binary

char str[] = “Hello world\v”;



gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?
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gcc source code 
in C

gcc gcc binary

This will throw a compilation error.  
Why?



gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?
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gcc source code 
in C

gcc gcc binary

We have to tell the C compiler about `\v` before 
we can use `\v` 

char str[] = “Hello world\v”;



gcc compiles gcc
Let’s say I wanted to add ‘\v’ – how would I do that?
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gcc source code 
in C

gcc gcc binary

Now, this will compile!

char str[] = “Hello world\v”;



If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries
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some source code 
in C

compile(s) compiles the next line of source code



If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries
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some source code 
in C

If I owned the C compiler, I could add logic that 
introduces malicious bugs when certain patterns 
appear, e.g., if trying to compile “login” program



If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries
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login program 
on UNIX

Evil GCC

Compromised 
login binary that 

allows 
deepak:deepak 
on all machines



If you own gcc, you can backdoor anything
Trojan Horsing the C compiler to return malicious binaries

39

… but this is very easy to detect if you read the C compiler code. Why?

login program 
on UNIX

Evil GCC

Compromised 
login binary that 

allows 
deepak:deepak 
on all machines



If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed
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some source code 
in C

In addition to matching on login, I could also 
match the C compiler itself, and compile in 

both trojans



If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed
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some source code 
in C

In addition to matching login, I could also 
match the C compiler itself, and compile in 

both trojans

Checks if program is login, if so, returns backdoor



If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed
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some source code 
in C

In addition to matching login, I could also 
match the C compiler itself, and compile in 

both trojans

Checks if program is C compiler, if so, 
returns backdoored version of C compiler



If you own gcc, you can be even more stealthy
Trojan horsing the C compiler to bug code without you knowing it’s trojan horsed
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some source code 
in C

GCC will return an evil version of login, and an evil 
version of the C compiler itself



So here’s what happens…
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• You install the double-trojaned version as the compiler on a machine 

• You can change the source code of gcc back to the non-malicious version 

• Anytime someone compiles login or even gcc, they’ll still get the backdoor even when 
it’s nowhere to be found in the source code.  

• It’s the exact same as 11 only being needed one time, after that, you can use ‘\v’   

• Moral: You can’t trust code that you did not totally create yourself (aka, everything) 

• Compilers, assemblers, loaders, even hardware microcode 

• Deepak’s extension: You can’t have security without trust



This totally happens in real life
XZ Utils Backdoor – CVE-2024-3094
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• In February 2024, a Microsoft employee found a backdoor in XZ, a popular 
compressor for Unix-like operating systems 

• The backdoor was found in compressed test files that enabled full remote-
code execution on the machine using the compromised xz via sshd 

• The backdoor was introduced in the supply chain – a developer (Jia Tan) who 
contributed to XZ for years introduced the patch in obfuscated test files 

• Primary guess right now is nation-state, but we’re not sure 

• Provocation: Do you trust that every piece of software on your machine has not 
been tampered with? Why?



My take on computer security
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• Security is not a “thing you do”, it is a way of life 

• We call this the “adversarial mindset:” how do you think like an attacker so 
you can be ready to 1) find problems or 2) fix them before they happen? 

• Some paranoia is good, maximal paranoia is worthless; we want a sweet 
spot, called rational paranoia 

• Security is always in relation to to the threat 

• What does it mean to “be secure?” Against what? With what assumptions?



Course Ethos + Logistics
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Course info

• Website: https://cseweb.ucsd.edu/classes/wi26/cse127-a/ 

• Slides posted right before class so you can follow along 

• Canvas: https://canvas.ucsd.edu/courses/71475 

• Gradescope for grading 

• Piazza for communication (avoid email if you can) 

• Office Hours 

• Tuesday 11 – 12pm (or by appointment), CSE 3248
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Goals and non-goals of this course
This is a hands-on course

• Goals 

• Provide a solid foundation of security concepts, applied to concrete topic areas and hands-on PAs 

• Learn the security mindset 

• How to think like an attacker / security engineer 

• Looking at systems beyond intended functionality 

• Understanding how things work, how they break, and how to fix them 

• Non-goals 

• A deep dive into any one subarea (this is a breadth course) 

• Review of all security mechanisms (we cannot cover everything)

49



This course, broadly
Topic areas
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• We’ll cover the following topic areas as best we can in ten weeks: 

• Application security 

• Systems security 

• Web security 

• Network security 

• Cryptography 

• Sociotechnical security



Course materials
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• No textbook for the class, but here’s some I recommend anyway if you’re 
curious… 

• Security Engineering, by Ross Anderson 

• Cryptography Engineering, by Niels Ferguson, Bruce Schneier, and 
Tadayoshi Kohno 

• Other readings I’ll provide as we go on the course website for additional 
context



Structure + Grading of this course

• Programming Assignments (40% of your grade) 

• Midterm (25% of your grade) 

• Final (35% of your grade)
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Programming Assignments
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• You’ll get hands-on experience deploying real attacks and defenses in the 
following domains: 

• Application Security (PA1, PA2) 

• Web Security (PA3) 

• Network Security (PA4) 

• Cryptography (PA5) 

• Schedule of release + due dates are already available on website 

• This class moves fast. There is always an active PA. PA1 is already out!



Programming Assignments
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• Programming assignments MAY be done in teams (if you wish); teams do not 
need to stay the same between PAs 

• PA1 is 4% of your grade (more of a PA0…), the remainder are 9% of your 
grade each 

• Students MUST NOT collaborate with anyone outside of their partner; any 
unsanctioned group work is academic integrity violation and will be reported



What you will need to know for PAs
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• We cover a wide spectrum of tools, languages, and concepts — C, assembly, 
Python, JavaScript, Networking…  

• I’ll cover the high levels of these in class, but you need to be prepared to 
learn stuff on your own 

• E.g., I’m not teaching you x86 32-bit assembly or C or JavaScript



Rules for PAs

56

• PAs are due at 11:59:59 PT on the due date listed 

• You get two late days on PAs (both teammates need to have a late day to use otherwise you don’t get one) 
— these are applied automatically 

• Regrades are very much the exception, not the norm 

• We reserve the right to completely regrade your assignments :) 

• NO CHEATING 

• Read and understand the UCSD policy on academic integrity 

• https://academicintegrity.ucsd.edu 

• Not OK to copy, paraphrase, translate, etc. somebody else’s work 

• If you not sure if something is cheating, assume it is until you ask about it

https://academicintegrity.ucsd.edu


AI / LLM Policy
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• Feel free to use AI / LLMs to help you with your PAs.  

• I have found these tools to be marginally useful in these PAs, outright wrong at other times… use 
at your own peril 

• You must attest to your usage of AI in Gradescope. Otherwise, it’s an academic integrity 
violation (yes, we are checking). 

• Note: Exams (which remember are 60% of your grade) will test both lecture material and PA material.  

• If you find a way to use AI to do no metacognition, congrats, but you’ll probably do quite poorly 
on exams (and therefore, do poorly in the course) 

• Plus, you’re here at UCSD to learn how to do things on your own… 

• My recommendation? Don’t use AI at all, but you’re all adults, so up to you 



A word on ethics…
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• In this class, you will learn how to attack the security of various computer programs and 
systems 

• We learn attacks because understanding them is crucial to building defenses against those 
attacks 

• You are obligated to use this knowledge ethically 

• You MUST NOT attack others 

• In addition to being unethical, it’s likely a felony per the Computer Fraud and Abuse 
Act (CFAA) 

• If you feel like testing your chops, there are lots of sanctioned ways (see capture the flag 
competitions)



Exams
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• Two exams, a midterm (week 6, in class) and a final (during finals week) 

• Midterm 25%, Final 35% 

• Structure of both is very similar 

• Litany of multiple choice questions primarily focused on lecture 

• Broader “PA”-style questions that build on what you did for the PA but with 
different inputs / outputs 

• Final is comprehensive but PA questions will trend towards PA4 and PA5



Attendance, Podcasting, Participation
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• Attendance is not mandatory for this course, but I think you’ll get the most out of it 
if you attend in person 

• Podcast will be made available, but only for a week following the lecture. No 
exceptions will be made to this rule. 

• Why? I want to support flexibility in learning (I know it’s 8am) while also 
preventing cramming 

• I ask a lot of questions in class as a mechanism for learning, so be prepared for that 

• If you want to use a laptop during lecture, that’s fine, but please sit in the back (it’s 
distracting to other students and often to me)



Course Vibes
Community-centric learning

• The classroom is community 

• Get to know one another! The course is only made better when you know 
each other 

• Come prepared with questions, comments, concerns, thoughts, etc. 

• Discussions should be respectful, understanding everyone is here to 
contribute and to learn 

• This is my first time teaching CSE 127 

• There will be some bugs. Thanks for your patience as we figure them out.
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Immediate Logistics

• PA1 is released! It is a basic primer on gdb and x86 — both of which you will need to 
succeed in PA2.  

• Due on 1/15 at 11:59:59 

• Find a teammate, get to work! Piazza has the teammate search feature open should you 
need to coordinate. 

• I view this more of a PA0… not too challenging (imo) and should get you used to the way 
we submit and turn in assignments for the quarter 

• Submission on Gradescope via Canvas 

• Complete the #FinAid survey on Canvas (necessary to support those w/ financial aid needs) 

• https://canvas.ucsd.edu/courses/71475/quizzes/238979
62

https://canvas.ucsd.edu/courses/71475/quizzes/238979


Next time…

• We’ll talk about risk and threat modeling, and a general approach to 
analyzing and investigating computer security 

• Worth reading Ken Thompson’s reflections on trusting trust (it’s just 3-
pages) to solidify the trojan we talked about in class today 

• Next week, we’ll start with Application + Systems Security (buffer overflow 
attacks, etc.)  

• Discussions begin next Monday and will be more hands on with the PAs.

63


