CSE127, Computer Security

Course introduction, definitions, reflections on trusting trust

UCSan Diego



whoami

undergraad grad postdoc

Deepak Kumar
ssistant Professor in CSE



Background on me (research)

® | work primarily on applied computer security research, my research interests are in sociotechnical
security (computer security + human-computer interaction)

® |nterests primarily in ways that technology + society interact, and where security or safety
oroblems arise (e.g., online harassment, mis/disinformation, Al generated deepfakes, trust on the
Internet, etc.)

® Mostly, I'm a data + systems guy.... e.q.,
® “What does the marketplace for nonconsensual sexual deepfake creation look like?”

® "How much toxic content there on Reddit, and what can we learn about attack patterns than
inform defenses?”

® “How can we build better detenses for journalists tacing online harassment on social media?”



How'd | get into security?

® | took the UMich version of this class 11 years ago (Winter 2015)

® Two versions of my story (both are true)

® |'ve always been very interested in technology + society, and computer
security is a field that by definition gets to impact both ot those interests

® | wanted to do computer architecture research in undergrad, but | didnt get a
good enough grade. The security group was looking for students and | got an
A in the 127-equivalent, so they took me, and the rest is history

® Started in network security, moved my way towards more human-centered work



| also do other things...

D OB = Playwright Deepak Kumar, whose “House of India"” play will make its world premiere at the Old Globe in 2025. (The Old
Globe)

‘House of India’

This world premiere play was written by San Diego resident Deepak Kumar, who is both a

playwright and a computer science assistant professor at UC San Diego. The play is setin a
family-owned Indian restaurant in a Cleveland-area strip mall, where Ananya has reluctantly
taken over after her husband'’s death. She's faced with mounting bills and disagreement
between her children over whether to stick to her husband’s traditional menu or modernize
with a quick-service, fusion concept. “It's about the American question of holding on to our
traditions versus assimilating into the mainstream,” Edelstein said. It will be directed by Zi
Alikhan (Pasadena Playhouse's “Sanctuary City”). May 10-June 1.




What are we (UCSD) known for in security?

® Measurement (cybercrime, malware, spam, captchas, fraud, etc.)

® Defenses (threat intelligence, cyber hygiene, etc.)

® Embedded Security (hacking cars, voting machines, airplanes, credit card skimmers,
medical devices)

® \Web security + PLsec (cookies, information tlow, wasm runtime shenanigans)
® |ntersection of crypto + security (turns out, implementing crypto is very hard)
® | ots of faculty here working on stuft — more here

® https://cryptosec.ucsd.edu

® http://sysnet.ucsd.edu



https://cryptosec.ucsd.edu
http://sysnet.ucsd.edu

Course Staff

1]
/)

I’I
1/7/

3
=~

—

Soe—m

|
//I

1
]
l

m
rf]
//III//III//

KT o
17 ’
i

il

Bella Jeong Manan Patel
TA Tutor

jeong@ucsd.edu mbp001@ucsd.edu



mailto:ljeong@ucsd.edu

5-Minute Introductions

® Find two other people in the classroom you're sitting
nearby (ideally people you haven’t met)

® \Write and send us an email introducing yourselves to us
(one per group is fine):

® Names, degree programs + year progress (e.g., junior,
senior)

® \Why did you enroll in this class?

® \What is something you do for fun?

® Attach a selfie!

® Send introductions to cse-127staff-g@ucsd.edu


mailto:cse-127staff-g@ucsd.edu

Let’s recap the last 5-minutes of your life



10

Let’s recap the last 5-minutes of your life

® Some guy (me) who most of you just met stood up and claimed to be the
professor ot the class



11

Let’s recap the last 5-minutes of your life

® Some guy (me) who most of you just met stood up and claimed to be the
professor ot the class

® He asked you to do a task that required some eftort (and therefore took up
your precious time)



12

Let’s recap the last 5-minutes of your life

® Some guy (me) who most of you just met stood up and claimed to be the
professor of the class

® He asked you to do a task that required some effort (and therefore took up
your precious time)

® He asked you to send a compilation of information about yourselves to a
random email address, including a picture!?



13

Let’s recap the last 5-minutes of your life

® Some guy (me) who most of you just met stood up and claimed to be the
professor ot the class

® He asked you to do a task that required some eftort (and therefore took up
your precious time)

® He asked you to send a compilation of information about yourselves to a
random email address, including a picture!?

Why did you do that?



14

Security is all about trust

You can’t have security if you trust no one



15

Security is all about trust

You can’t have security if you trust no one

® \\ith those same groups (no tricks this time), answer the following questions:
® \What is security?
® \What is computer security?

® \\What is trust?



16

Security is all about trust

You can’t have security if you trust no one

® \\ith those same groups (no tricks this time), answer the following questions:
® What is security?
® \What is computer security?

® \\What is trust?



17

Definitions: Security

® Merriam-Webster online dictionary:

® The quality or state of being secure: such as

® Free from danger : safety
® Freedom from fear or anxiety

® Freedom for the prospect ot being laid off (job security)



18

Definitions: Security

® Merriam-Webster online dictionary:

® The quality or state of being secure: such as

® Free from danger : safety
® Freedom from fear or anxiety
® Freedom for the prospect ot being laid off (job security)

® Note: Security is about freedom (from some entity, force, or otherwise)



19

Security is all about trust

You can’t have security if you trust no one

® \\ith those same groups (no tricks this time), answer the following questions:
® \What is security?
® What is computer security?

® \\What is trust?



Definitions: Computer Security

® Most of computer science is about functionality:
o UX/UI
® Architecture
o Al/ ML development
® QOperating Systems / Networking / Databases
® Compilers/PL

® Microarchitecture

® Computer security is not about functionality
® Computer security is the study of a computer system in the presence of an adversary
® Holistic property:
® “Software security is about integrating security practices into the way you build software, not

integrating security features into your code” — Gary McGraw, ex-VP ot Synopsys



21

Security is all about trust

You can’t have security if you trust no one

® \\ith those same groups (no tricks this time), answer the following questions:
® \What is security?
® \What is computer security?

e What is trust?



22

Security is all about trust

You can’t have security if you trust no one

trust

[trast/

nour

1. firm belief in the reliability, truth, ability, or strength of someone or something.

‘relations have to be buiit on trust”
Similar: confidence belief faith freedom from suspicion/doubt sureness v

2. LAW

an arrangement whereby a person (a trustee) holds property as its nominal owner for the good of
one or more beneficiaries.

"a trust was set up”

Similar:  safe keeping keeping protection charge care custody v



23

Reflections on Trusting Trust
1984 Turing Award Lecture

Ken Thompson + Dennis Ritchie

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

INTRODUCTION

[ thank the ACM for this award. I can't help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX' swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row (1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11,
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, “Dance with the one that
brought you,” which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet | continue to get undeserved credit for the
work of others. Therefore, | am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

That brings me to Dennis Ritchie. Our collaboration
has been a thing of beauty. In the ten years that we
have worked together, I can recall only one case of
miscoordination of work. On that occasion, 1 discovered
that we both had written the same 20-line assembly
language program. I compared the sources and was as-
tounded to find that they matched character-for-char-
acter. The result of our work together has been far
greater than the work that we each contributed.

I am a programmer. On my 1040 form, that is what |
put down as my occupation. As a programmer, [ write

TUNIX is a trademark of AT&T Bell Laboratories.

© 1984 0001-0782 /84 ,/0800-0761 75¢

August 1984 Volume 27 Number 8

programs. [ would like to present to you the cutest
program I ever wrote. | will do this in three stages and
try to bring it together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to write a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, | urge you to try it on your own.
The discovery of how to do it is a revelation that far
surpasses any benefit obtained by being told how to do
it. The part about “shortest” was just an incentive to
demonstrate skill and determine a winner.

Figure 1 shows a self-reproducing program in the C*
programming language. (The purist will note that the
program is not precisely a self-reproducing program,
but will produce a self-reproducing program.) This en-
try is much too large to win a prize, but it demonstrates
the technique and has two important properties that |
need to complete my story: 1) This program can be
easily written by another program. 2) This program can
contain an arbitrary amount of excess baggage that will
be reproduced along with the main algorithm. In the
example, even the comment is reproduced.

Communications of the ACM




24

Reflections on Trusting Trust

How do we run C programs?

C Program




25

Reflections on Trusting Trust

How do we run C programs?

Compiler Binary

(e.g., gcc, g++)




26

Reflections on Trusting Trust

How do we run C programs?

Compiler Binary

(e.g., gcc, g++)

hello world

application




What language is gcc written in?



What language is gcc written in?

Surprise! It's C.



29

gcc compiles gcc

gcc source code
—_— —_—
in C IE

gcc binary




gcc compiles gcc

Simple function for parsing and escaping characters

gcc source code

in C

char str[] = “Hello world\n”;

30

¢ = next( );

ifc '="\\")
return(c);

¢ = next( ),

iflc == "\\")
return{"\\");

iflc == "'n")
return("\n"’);




gcc compiles gcc

Let’s say | wanted to add ‘\v' — how would | do that?

gcc source code

in C

char str[] = “Hello world\v”;

31

¢ = next( );

ifc '="\\")
return(c);

¢ = next( ),

iflc == "\\)
return{"\\");

iflc == 'n")
return("\n"’);




gcc compiles gcc
Let’s say | wanted to add ‘\v' — how would | do that?

¢ = next({ ),

ific 1= "\\")
return(c);
¢ = next( );
gcc source code iffc == "\\")
: return(’\\");
N
C |f(c —_—— 'n')
return("\n’);
iflc == "v’)

return("\v’);
char str[] = “Hello world\v”;

32




33

gcc compiles gcc
Let’s say | wanted to add ‘\v' — how would | do that?

¢ = next({ ),

ific 1= "\\)
return(c);
¢ = next( )
gcc source code iffc == "\\")
: return(’\\');
in C fic == 'n’)
return("\n’);
ific == "v’)
return("\v’);

This will throw a compilation error.
Why?



gcc compiles gcc
Let’s say | wanted to add ‘\v' — how would | do that?

c = next( ),
iflc '= "\\")

return(c);
¢ = next( )

gcc source code iflc == "\\)

return("'\\');
iflc =="n")

return('\ n’);
iflc == "v')

return(11),

in C

char str[] = “Hello world\v”;

We have to tell the C compiler about "\v' betore
y we can use \v



gcc compiles gcc
Let’s say | wanted to add ‘\v' — how would | do that?

¢ = next({ ),

ific 1= "\\)
return(c);
¢ = next( )
gcc source code iffc == "\\")
: return(’\\');
in C fic == 'n’)
return("\n’);
ific == "v’)

return("\v’);
char str[] = “Hello world\v”;

Now, this will compile!

35




36

If you own gcc, you can backdoor anything

Trojan Horsing the C compiler to return malicious binaries

some source code

in C

compile(s) compiles the next line of source code



37

If you own gcc, you can backdoor anything

Trojan Horsing the C compiler to return malicious binaries

compile(s)
char =s;

{

if(match(s, “pattern”)) {
some source code

compile(*bug”);
return;

in C

It | owned the C compiler, | could add logic that
introduces malicious bugs when certain patterns
appear, e.g., if trying to compile “login” program



38

If you own gcc, you can backdoor anything

Trojan Horsing the C compiler to return malicious binaries

Compromisead
login binary that

login program

Evil GCC

on UNIX allows

deepak:deepak

on all machines




39

If you own gcc, you can backdoor anything

Trojan Horsing the C compiler to return malicious binaries

Compromisead
login binary that

login program

Evil GCC

on UNIX allows

deepak:deepak

on all machines

... but this is very easy to detect it you read the C compiler code. Why?



If you own gcc, you can be even more stealthy

Trojan horsing the C compiler to bug code without you knowing it's trojan horsed

compile(s)
char =s:

t

if(lmatch(s, “pattern1”)) {

compile (“bug1”);
return;
|
some source code if(match(s, “pattern 27)) |
"¥e compile (“bug 27);
return;

!

h et ——e T — T R —

In addition to matching on login, | could also
match the C compiler itself, and compile in

, both trojans



Checks if program is 1login, if so, returns backdoor

if(match(s, “pattern1”)) {
compile (“bug1”);

return;

SOMme solirce (‘ﬂ(“]@



Checks if program is C compiler, if so,
returns backdoored version of C compiler

Vil VU Vo UCUuUuUo

> if(match(s, “pattern 27)) {
inC compile (*bug 2°)

return;




43

If you own gcc, you can be even more stealthy

Trojan horsing the C compiler to bug code without you knowing it's trojan horsed

compile(s)
char »s;
t
if(match(s, “pattern1”)) {
compile (“bug1”);
return;
|
some source code if(match(s, “pattern 2°)) |
"¥e compile (“bug 27);
return;

!

h et ——e T — T R —

GCC will return an evil version of 1ogin, and an evil
version of the C compiler itself



44

So here’s what happens...

® You install the double-trojaned version as the compiler on a machine
® You can change the source code of gcc back to the non-malicious version

® Anytime someone compiles 1ogin oreven gcc, they'll still get the backdoor even when
it's nowhere to be found in the source code.

® |t's the exact same as 11 only being needed one time, after that, you can use "\V'
® Moral: You can’t trust code that you did not totally create yourself (aka, everything)
® Compilers, assemblers, loaders, even hardware microcode

® Deepak’s extension: You can’t have security without trust



45

This totally happens in real life
XZ Utils Backdoor — CVE-2024-3094

® |n February 2024, a Microsoft employee found a backdoor in XZ, a popular
compressor for Unix-like operating systems

® The backdoor was found in compressed test files that enabled full remote-
code execution on the machine using the compromised xz via sshd

® The backdoor was introduced in the supply chain — a developer (Jia Tan) who
contributed to XZ tor years introduced the patch in obfuscated test files

® Primary guess right now is nation-state, but we're not sure

® Provocation: Do you trust that every piece of software on your machine has not
been tampered with? Why?



46

My take on computer security

® Security is not a “thing you do”, it is a way of life

® \We call this the “adversarial mindset:” how do you think like an attacker so
you can be ready to 1) find problems or 2) tix them before they happen?

® Some paranoia is good, maximal paranoia is worthless; we want a sweet
spot, called rational paranoia

® Security is always in relation to to the threat

® \What does it mean to “be secure?” Against what? With what assumptions?



Course Ethos + Logistics




48

Course info

® \Website: https://cseweb.ucsd.edu/classes/wi26/csel12/-a/

e Slides posted right before class so you can follow along
® Canvas: https://canvas.ucsd.edu/courses/71475
® Gradescope for grading

® Piazza for communication (avoid email if you can)

® Office Hours

® Tuesday 11— 12pm (or by appointment), CSE 3248


https://cseweb.ucsd.edu/classes/wi26/cse127-a/

49

Goals and non-goals of this course

This is a hands-on course

® Goals
® Provide a solid foundation of security concepts, applied to concrete topic areas and hands-on PAs
® | earn the security mindset
® How to think like an attacker / security engineer
® | ooking at systems beyond intended functionality
® Understanding how things work, how they break, and how to fix them
® Non-goals
® A deep dive into any one subarea (this is a breadth course)

® Review of all security mechanisms (we cannot cover everything)



50

This course, broadly

lopic areas

® \We'll cover the following topic areas as best we can in ten weeks:
® Application security
® Systems security
® \Web security
® Network security
e Cryptography

® Sociotechnical security



S

Course materials

® No textbook for the class, but here's some | recommend anyway if you're
CUrious...

® Security Engineering, by Ross Anderson

e Cryptography Engineering, by Niels Ferguson, Bruce Schneier, ana
Tadayoshi Kohno

® Other readings I'll provide as we go on the course website for additional
context



52

Structure + Grading of this course

® Programming Assignments (40% of your grade)
® Midterm (25% of your grade)

® Final (35% of your grade)



53

Programming Assignments

® You'll get hands-on experience deploying real attacks and detfenses in the
following domains:

® Application Security (PA1, PA2)
® Web Security (PA3)
® Network Security (PA4)
® Cryptography (PA5)
® Schedule of release + due dates are already available on website

® This class moves fast. There is always an active PA. PA1 is already out!



54

Programming Assignments

® Programming assignments MAY be done in teams (it you wish); teams do not
need to stay the same between PAs

® PA1 is 4% ot your grade (more of a PAQ...), the remainder are 9% of your
grade each

® Students MUST NOT collaborate with anyone outside of their partner; any
unsanctioned group work is academic integrity violation and will be reportea



55

What you will need to know for PAs

® \We cover a wide spectrum of tools, languages, and concepts — C, assembly,
Python, JavaScript, Networking...

® |'l| cover the high levels of these in class, but you need to be prepared to
learn stuff on your own

® F.g., I'm not teaching you x86 32-bit assembly or C or JavaScript



56

Rules for PAs

® PAs are due at 11:592:59 PT on the due date listed

® You get two late days on PAs (both teammates need to have a late day to use otherwise you don’t get one)
— these are applied automatically

® Regrades are very much the exception, not the norm

® \We reserve the right to completely regrade your assignments :)
e NO CHEATING

® Read and understand the UCSD policy on academic integrity

® https://academicintegrity.ucsd.edu

® Not OK to copy, paraphrase, translate, etc. somebody else’s work

® |f you not sure it something is cheating, assume it is until you ask about it


https://academicintegrity.ucsd.edu

S7

Al / LLM Policy

® Feel free to use Al / LLMs to help you with your PAs.

® | have found these tools to be marginally useful in these PAs, outright wrong at other times... use
at your own peril

® You must attest to your usage of Al in Gradescope. Otherwise, it's an academic integrity
violation (yes, we are checking).

® Note: Exams (which remember are 60% of your grade) will test both lecture material and PA material.

® |f you find a way to use Al to do no metacognition, congrats, but you'll probably do quite poorly
on exams (and theretore, do poorly in the course)

® Plus, you're here at UCSD to learn how to do things on your own...

® My recommendation? Don't use Al at all, but you're all adults, so up to you



58

A word on ethics...

® |n this class, you will learn how to attack the security of various computer programs and
systems

® \We learn attacks because understanding them is crucial to building defenses against those
attacks

® You are obligated to use this knowledge ethically

® You MUST NOT attack others

® |n addition to being unethical, it's likely a felony per the Computer Fraud and Abuse
Act (CFAA)

® |f you feel like testing your chops, there are lots of sanctioned ways (see capture the tlag
competitions)



59

Exams

® Two exams, a midterm (week 6, in class) and a final (during finals week)
® Midterm 25%, Final 35%

® Structure of both is very similar
® | itany of multiple choice questions primarily focused on lecture

® Broader "PA"-style questions that build on what you did for the PA but with
different inputs / outputs

® Final is comprehensive but PA questions will trend towards PA4 and PAS



60

Attendance, Podcasting, Participation

® Attendance is not mandatory for this course, but | think you'll get the most out of it
if you attend in person

® Podcast will be made available, but only for a week following the lecture. No
exceptions will be made to this rule.

® \Why? | want to support flexibility in learning (I know it's 8am) while also
preventing cramming

® | ask a lot of questions in class as a mechanism for learning, so be prepared for that

® |f you want to use a laptop during lecture, that's fine, but please sit in the back (it's
distracting to other students and often to me)



61

Course Vibes

Community-centric learning
® The classroom is community

® Get to know one another! The course is only made better when you know
each other

® Come prepared with questions, comments, concerns, thoughts, etc.

® Discussions should be respectful, understanding everyone is here to
contribute and to learn

® This is my first time teaching CSE 127

® There will be some bugs. Thanks for your patience as we tigure them out.



62

Immediate Logistics

® PA1 is released! It is a basic primer on gdb and x86 — both of which you will need to
succeed in PA2.

® Dueon 1/15at 11:59:59

® Find a teammate, get to work! Piazza has the teammate search feature open should you
need to coordinate.

® | view this more of a PAO... not too challenging (imo) and should get you used to the way
we submit and turn in assignments for the quarter

® Submission on Gradescope via Canvas

® Complete the #FinAid survey on Canvas (necessary to support those w/ financial aid needs)

® https://canvas.ucsd.edu/courses/71475/quizzes/238979



https://canvas.ucsd.edu/courses/71475/quizzes/238979

63

Next time...

e \We'll talk about risk and threat modeling, and a general approach to
analyzing and investigating computer security

® \Worth reading Ken Thompson'’s reflections on trusting trust (it's just 3-
pages) to solidify the trojan we talked about in class today

® Next week, we'll start with Application + Systems Security (buffer overtlow
attacks, etc.)

® Discussions begin next Monday and will be more hands on with the PAs.



