CSE 127 Midterm Review

Midterm Logistics

- Date : 2/12, during class hours, Center Hall 109
- Question format : Multiple choice, short answer, PA questions
- Cheat sheets (one letter size page, double sided is okay, printing is okay)

- Scope: Things talked about in lecture, and what you did in the PAs

Topics

Threat Modelling
and Security
Properties

Control Flow Vulnerabilities :

- Different types of buffer
overflow attacks

- Mitigation strategies

- techniques for evading
mitigations

- Relationship between each
other

Memory Safety:

- Return Oriented
Programming (ROP)

- Control Flow Integrity
(CFI)

System Security :

- VMs

- Principles of secure system design
- Isolation (memory isolation, i
resource isolation in Unix, -
user/kernel isolation)

Web

Security :

how the web works (Http, DOMs and
JS)

Attacker model, Security model
Same-Origin Policy (SOP)

Cross-Site Scripting (XSS)

Cross-Site Request Forgery (CSRF)
SQL Injection (SQLI)

Threat Modelling

e Asset we are trying to protect, and from which Attacker ? - WHAT and WHO

e Security Boundary? Attack Surface?
e The threat model defines the problem to be

solved and problem scope

Assets

Example assets we are trying to protect?

e Password (hashes): Secret code for authentication.
e Emails: System for sending and receiving messages electronically.

e Browsing history: Pages visited, useful for web marketing and forensics.

Security Properties

What properties are we trying to enforce? (CIA triad)

Confidentiality: Prevention of unauthorized access to information
Integrity: Prevention of unauthorized changes

Authenticity: ldentification and assurance of origin

Availability: Prevention of unauthorized denial of service to others
Privacy: Protect sensitive information, such as personally identifiable

information, etc.

Buffer Overflows

e What is a buffer overflow?
e What assumptions do buffer overflows violate?
e Where do buffer overflows typically occur and why?

e What is the problem with gets() and strcpy() ?

Buffer Overflows

What are different ways to exploit a buffer overflow?
e Format String vulnerabilities
e Integer overflows

e Pointers

Memory layout and the Stack -

Stack
o Local variables, function calls
Heap
o malloc, new, etc.
Stack Frames
o Each frame stores local vars and arguments to
called functions
Stack Pointer (%esp)
o Points to the top of the stack
o Grows down (High to low addrs)
Frame Pointer (%ebp)
o Points to the base of the caller’s stack frame

OXFFFFFFFF
0xC0000000

0x40000000

High Memory

0x08048000

arguments

0x00000000

saved %eip

%ebp —

saved %ebp

Callee saved
registers

local variables

%esp >

Low Memory

>T207TO

Mitigations: Stack Canaries e r
s

Detect overwriting of the AN Bypass:
return address SFET] - Learning the
— Place a special value (aka canary @xbbbbbbbb Ca-nary

o) bt ocal variabl Oxaaaaaaaa - Pointer
or cookie) between local variables —— subterfuge
and the saved frame pointer saved ebp

%ebp —
— Check that value before popping canary
. Oxdeadbeef

saved frame pointer and return buf[0-3]
address from the stack

%esp —

Mitigations: DEP (Data Execution Prevention)

Make all pages either writable or executable, but not both

Stack and heap are writeable, but not executable

Code is executable, but not writeable

Also known as WX (Write XOR eXecute)

prevent shell code from being executed in stack and heap

Bypasses:

Transfer control flow to an existing function (return-to-libc) (target 5)
Return Oriented Programming (target /)

Mitigations: ASLR (Address Space Layout Randomization)

high address

Add random offsets to sections of process Random offset

memory.

Bypasses:

! mem mapped 1

- Guessing, Longer NOP sled (target 6)
- Heap Spraying 1 heap 1

SR

low address

Evading Mitigations: Return-to-Libc

Motivation: Bypass DEP. Can’t execute code we inject, so need to reuse existing

code.

|Idea: Overwrite the return address to point to start of system()

- Place address of “/bin/sh” on the stack so that system() uses it as the

argument.
- Targeth

Evading Mitigations: Return Oriented Programming

e Why do we need return oriented programming? What does it help us do?
o Perform exploits in the face of WAX (DEP) when cannot find just the right function
e Make complex shellcode out of existing application code
o Call these gadgets
o Where can you find the gadgets?
m From executable pages in memory (app code, libc, other libraries)
m Use attack tools
o Where can you “stitch” these gadgets together?
m Stack

e How can we defend ROP?

o Control Flow Integrity
o Type-safe/memory-safe languages

Mitigations: CFl (Control Flow Integrity)

|dea: Protecting indirect transfer of control flow instructions. Go after root of problem.
Direct control flow transfer:

- Advancing to next sequential instruction
- Jumping to (or calling a function at) an address hard-coded in the instruction
- Generally not a problem. In code where attackers cannot control

Indirect control flow transfer

- Jumping to (or calling a function at) an address in register or memory
- Forward path: indirect calls and branches (e.g., a function you are calling)
- Reverse path: return addresses on the stack (returning from a called function)

Restrict program control flow to the control flow graph (how it was written)

Put label at call site and target. Before jump, validate if target label matches jump site.

Principles of secure system design

e |east Privilege
o Only provide as much privilege to a program as is heeded to do its job

e Privilege separation
o Multi-user operating system

e Complete mediation
o Check every access that crosses a trust boundary against security policy

e Defence-in-depth
o Use more than one security mechanism

e Keep-it-simple

Memory Isolation

Virtual memory Physical
(per process) memory

® Process should not be able to access another

process’s memory

e [Each process gets its own virtual address space,
managed by the operating system

e Memory addresses used by processes are
virtual addresses (VAs) not physical addresses

(PAS)

e Address translation and Page tables

Process Isolation in Unix

- Process should only be able to access certain resources

- Permissions to access files are granted based on user IDs
- Access Operations on file: Read, Write, eXecute

- Each file has an access control list (ACL)

- Role based: user group other

Permissions for

Group Owner
l r=read
w = write
F'WXIW-r = execute
f \ -=No Permissions Set
Permissions for Permissions for

User Owner Other

Process Isolation in Unix SUID Group Sticky Bit

\ Permission /

- RUID: Determ.mes who start.ed.the process rWSI'WSI'Wt
- EUID: Determines the permissions for process
- Setuid bit Owner / Other

If setuid bit set: use UID of file owner as EUID Parmission Permission
- Setgid bit —

Same thing but for group

nadiah@login:$ 1ls -1
total 32

-rwxrw-r-- 1 nadiah professor 18660 Jan 14 00:34 foo.py
drwxrwxr-x 2 nadiah professor 4096 Jan 13 08:42 pa
-PWSrwxr-x 3 leo ta 12345 Jan 14 10:23 hello.py

Kernel/User Isolation

- Kernel is isolated from user processes

- Processor privilege levels

- page table

- Interface between userspace and kernel:

system calls
- To damage a system, must make system calls
- Kernel Mapping

- kernel’s virtual memory space is mapped into every

process, but made inaccessible when in user mode

Device drivers

Applications

Least privileged

Most privileged

Web Security

e Browser

Load and execute content

Basic/Nested execution model
o Frame and iFrame

Document Object Model (DOM)
DOM and JS

Same Origin Policy (SOP)
Cookies

Gropen |

 http://a.com

A.com

Security model

(: [

Process 1<] : Process 2

g VM + UIDs +
seccomp-bpf

zoom J v L keypassx
_ il J

files/sockets
A

(

4chan.org J v L bank.ch
& i =

i 2
Page 1 w ' [' Page 2

o -

< AR
[UIDS + ACLSJ

cookies/fetch
A

(o

Web Security

Root element:
<html>

e Document object model (DOM) et

<head>

Element:
<title>

Text:
"My title"
Element:
<hl>
Text:
"A heading"

o Javascript can read and modify page by —E e)

<a> href

interacting with DOM

o treats HTML as a tree structure wherein each

Element:
<body>

node is an object representing a part of the

Document Object Model

document.

Same origin policy (SOP)

e goal: isolate content of different origins

e Thereis no one SOP. We focus on:
o the DOM. Origin is a (scheme, domain, port)
o Cookies. domain/path + Secure/SameSite

e Frame can only access data with the same origin

» DOM tree, local storage, cookies, etc.

s.evil.ch,443)

(https,a.com,443)

(https,a.com,443)
\

Web Attacks and Defenses

e Server-Side Injection
o SQL Injection
m SQL basics
m Mitigations: Prepared statement
e C(Client-Side Injection
o Cross Site Scripting (XSS): Injecting malicious scripts into benign and trusted website
o Prevention: Content Security Policy
e Cross Site Request Forgery (CSRF)

o Bad website forces the user’s browser to send a request to a good website
o Cookies
o Mitigations: Tokens, Referer, SameSite

e Understand how the attack works

Good luck!

